Skip to main content

Anaerobic Mitochondria: Properties and Origins

  • Chapter
Origin of Mitochondria and Hydrogenosomes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackrell BAC, Johnson MK, Gunsalus RP, Cecchini G (1992) Structure and function of succinate dehydrogenase and fumarate reductase. In: Muller F (ed) Chemistry and biochemistry of flavoenzymes, vol III. CRC, Boca Raton, pp 229–297.

    Google Scholar 

  • Allen PC (1973) Helminths: comparison of their rhodoquinone. Exp Parasitol 34:211–219.

    Article  PubMed  CAS  Google Scholar 

  • Behm CA (1991) Fumarate reductase and the evolution of electron transport systems. In: Bryant C (ed) Metazoan life without oxygen. Chapman & Hall, London, pp 88–108.

    Google Scholar 

  • Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, Van Weelden SWH, Van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JH (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399.

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, Van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79.

    Article  PubMed  CAS  Google Scholar 

  • Bruchhaus I, Tannich E (1994) Purification and molecular characterization of the NAD(+)-dependent acet aldehyde/alcohol dehydrogenase from Entamoeba histolytica. Biochem J 303(Pt 3):743–748.

    Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716.

    Article  PubMed  CAS  Google Scholar 

  • De Zwaan A (1991) Molluscs. In: Bryant C (ed) Metazoan life without oxygen. Chapman & Hall, London, pp 186–217.

    Google Scholar 

  • Duran E, Komuniecki RW, Komuniecki PR, Wheelock MJ, Klingbeil MM, Ma YC, Johnson KR (1993) Characterization of cDNA clones for the 2-methyl branched-chain enoyl-CoA reductase. An enzyme involved in branched-chain fatty acid synthesis in anaerobic mitochondria of the parasitic nematode Ascaris suum. J Biol Chem 268:22391–22396.

    Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257.

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Finlay BJ, Dyal PL, Hirt RP, Wilkinson M, Williams AG (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc R Soc Lond B Biol Sci 262:87–93.

    Article  CAS  Google Scholar 

  • Embley TM, van der GM, Horner DS, Dyal PL, Bell S, Foster PG (2003a) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395.

    Google Scholar 

  • Embley TM, van der GM, Horner DS, Dyal PL, Foster P (2003b) Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos Trans R Soc Lond B Biol Sci 358:191–201.

    Google Scholar 

  • Fenchel T, Finlay BJ (1994) The Evolution of Life Without Oxygen. Am Sci 82:22–29.

    Google Scholar 

  • Finlay BJ, Span ASW, Harman JM (1983) Nitrate respiration in primitive eukaryotes. Nature 303:333–336.

    Article  CAS  Google Scholar 

  • Gabaldón T, Huynen MA (2004) Shaping the mitochondrial proteome. Biochim Biophys Acta 1659:212–220.

    Article  PubMed  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481.

    Article  PubMed  CAS  Google Scholar 

  • Grieshaber MK, Hardewig I, Kreutzer U, Pörtner HO (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147.

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Voncken F, van Hoek AH, van Alen T, Boxma B, Moon-van der Staay S, van der Staay GW, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology 104:290–302.

    Article  PubMed  CAS  Google Scholar 

  • Hederstedt L, Ohnishi T (1992) Progress in succinate:quinone oxidoreductase research. In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 163–198.

    Chapter  Google Scholar 

  • Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426:127–128.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmeister M, van der Klei A, Rotte C, van Grinsven KW, Van Hellemond JJ, Henze K, Tielens AGM, Martin W (2004) Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J Biol Chem 279:22422–22429.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmeister M, Piotrowski M, Nowitzki U, Martin W (2005) Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 280:4329–4338.

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Hirt RP, Embley TM (1999) A single eubacterial origin of eukaryotic pyruvate:ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol Biol Evol 16:1280–1291.

    PubMed  CAS  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1982) Wax ester fermentation in Euglena gracilis. FEBS Lett 150:89–93.

    Article  CAS  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1984) Fatty acid synthesis in mitochondria of Euglena gracilis. Eur J Biochem 142:121–126.

    Article  PubMed  CAS  Google Scholar 

  • Inui H, Ono K, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate:NADP+ oxidoreductase in Euglena gracilis. J Biol Chem 262:9130–9135.

    CAS  Google Scholar 

  • Kita K, Takamiya S (2002) Electron-transfer complexes in Ascaris mitochondria. Adv Parasitol 51:95–131.

    Article  PubMed  Google Scholar 

  • Kobayashi M, Matsuo Y, Takimoto A, Suzuki S, Maruo F, Shoun H (1996) Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J Biol Chem 271:16263–16267.

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki R, McCrury J, Thissen J, Rubin N (1989) Electron-transfer flavoprotein from anaerobic Ascaris suum mitochondria and its role in NADH-dependent 2-methyl branched-chain enoyl-CoA reduction. Biochim Biophys Acta 975:127–131.

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki R, Harris BG (1995) Carbohydrate and energy metabolism in helminths. In: Marr JJ, Müller M (eds) Biochemistry and molecular biology of parasites. Academic, London, pp 49–66.

    Chapter  Google Scholar 

  • Livingstone DR (1991) Origins and evolution of pathways of anaerobic metabolism in the animal kingdom. Am Zool 31:522–534.

    CAS  Google Scholar 

  • Lloyd D (1996) Obligate anaerobe or not. Nature 381:121.

    Article  PubMed  CAS  Google Scholar 

  • Lutz PL, Nilsson GE (1997) Contrasting strategies for anoxic brain survival – glycolysis up or down. J Exp Biol 200:411–419.

    PubMed  CAS  Google Scholar 

  • Margulis L (2005) Origin of eukaryotic cells. Yale University Press, New Haven.

    Google Scholar 

  • Martin W (2000) Primitive anaerobic protozoa: the wrong host for mitochondria and hydrogenosomes? Microbiology 146:1021–1022.

    PubMed  CAS  Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539.

    Article  PubMed  CAS  Google Scholar 

  • Müller M (1998) Enzymes and compartmentation of core energy metabolism of anaerobic protist – a special case in eukaryotic evolution? In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. Kluwer, Dordrecht, pp 109–131.

    Google Scholar 

  • Müller M (2000) A mitochondrion in Entamoeba histolytica? Parasitol Today 16:368–369.

    Article  PubMed  Google Scholar 

  • Roger AJ, Silberman JD (2002) Cell evolution: mitochondria in hiding. Nature 418:827–829.

    Article  PubMed  CAS  Google Scholar 

  • Roos MH, Tielens AGM (1994) Differential expression of two succinate dehydrogenase subunit-B genes and a transition in energy metabolism during the development of the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol 66:273–281.

    Google Scholar 

  • Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate:NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18:710–720.

    PubMed  CAS  Google Scholar 

  • Sanchez LB (1998) Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia. Arch Biochem Biophys 354:57–64.

    Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493.

    Article  PubMed  CAS  Google Scholar 

  • Saruta F, Kuramochi T, Nakamura K, Takamiya S, Yu Y, Aoki T, Sekimizu K, Kojima S, Kita K (1995) Stage-specific isoforms of complex II (succinate-ubiquinone oxidoreductase) in mitochondria from the parasitic nematode, Ascaris suum. J Biol Chem 270:928–932.

    Google Scholar 

  • Scheffler I (1999) Mitochondria. Wiley-Liss, New York.

    Book  Google Scholar 

  • Steinbüchel A, Müller M (1986) Glycerol, a metabolic end product of Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol 20:45–55.

    Google Scholar 

  • Takaya N, Kuwazaki S, Adachi Y, Suzuki S, Kikuchi T, Nakamura H, Shiro Y, Shoun H (2003) Hybrid respiration in the denitrifying mitochondria of Fusarium oxysporum. J Biochem (Tokyo) 133:461–465.

    Google Scholar 

  • Tielens AGM (1994) Energy generation in parasitic helminths. Parasitol Today 10:346–352.

    Article  PubMed  CAS  Google Scholar 

  • Tielens AGM, Rotte C, Van Hellemond JJ, Martin W (2002) Mitochondria as we don't know them. Trends Biochem Sci 27:564–572.

    Article  PubMed  CAS  Google Scholar 

  • Tielens AGM, Van Hellemond JJ (1998) The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta 1365:71–78.

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021.

    Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Valadi A, Granath K, Gustafsson L, Adler L (2004) Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 279:39677–39685.

    Article  PubMed  CAS  Google Scholar 

  • Van der Giezen M, Tovar J and Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175–225.

    Article  PubMed  Google Scholar 

  • Van Hellemond JJ, Tielens AGM (1994) Expression and functional properties of fumarate reductase. Biochem J 304:321–331.

    PubMed  Google Scholar 

  • Van Hellemond JJ, Klockiewicz M, Gaasenbeek CPH, Roos MH, Tielens AGM (1995) Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. J Biol Chem 270:31065–31070.

    Article  PubMed  Google Scholar 

  • van Waarde A, Van den Thillart G, Verhagen M (1993) Ethanol formation and pH-regulation in fish. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia, mechanisms of control and adaptation. CRC, Boca Raton, pp 157–170.

    Google Scholar 

  • Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869.

    Google Scholar 

  • Yarlett N, Coleman GS, Williams AG, Lloyd D (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21:15–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tielens, A.G.M., Van Hellemond, J.J. (2007). Anaerobic Mitochondria: Properties and Origins. In: Martin, W.F., Müller, M. (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38502-8_5

Download citation

Publish with us

Policies and ethics