Advertisement

Meteodynamic Stability

Part of the Lecture Notes in Physics Monographs book series (LNPMGR, volume 5)

Abstract

We consider here the main equation of the quasi-geostrophic model (9, 14), with (9, 15): , where and Bo≡1, λ0≡1.

Keywords

Rayleigh Number Rossby Wave Critical Rayleigh Number Ekman Layer Baroclinic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Background Reading

  1. Hydrodynamic and Hydromagnetic stability. Clarendon Press, Oxford, England.zbMATHGoogle Scholar
  2. Hydrodynamic stability. Cambridge University Press.Google Scholar
  3. Geophysical Fluid Dynamics. Springer-Verlag, New York IncGoogle Scholar

References to Works Cited in the Text

  1. J. Atmos. Sci., 21, 291–299.CrossRefADSMathSciNetGoogle Scholar
  2. Journal de Mécanique, 18, 633–660.zbMATHMathSciNetGoogle Scholar
  3. Asymptotic theory of Boussinesq waves in the atmosphere”. Publ. IRMA, Lille, vol. VI, Fasc. 4, no2, pages II, 1-II, 89.Google Scholar
  4. Izv. Acad. Sci. SSSR. Physics of the atmosphere and ocean, 9, no12, 1312–1315, (in Russian).Google Scholar
  5. J. Fluid Mech. 4, 214–224.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. in “Rotating Fluids in Geophysics”. Academic Press Inc., London (see, pages 139–169).Google Scholar
  7. In “Advances in Applied Mechanics”; Accademic Press, New York, 9, 1–89.Google Scholar
  8. Geophys. Publ., 17, no6, Oslo, 1–52.MathSciNetGoogle Scholar
  9. Proc. Roy. Soc. London, A, 132, 524–548.zbMATHCrossRefADSGoogle Scholar
  10. J. Fluid Mech., 10, 509–512.zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. J. Meteorol., 6; 105–122.Google Scholar
  12. Waves in the Ocean. Elsevier Scientific Publ. Company, Amsterdam.CrossRefGoogle Scholar
  13. Austr. J. Phys., 27, 495–509.ADSGoogle Scholar
  14. J. Fluid Mech., 10, 496–508.zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. Proc. London Math. Soc., 9, 57–70.Google Scholar
  16. Proc. Roy. Soc. London, A, 142; 621–628.CrossRefADSGoogle Scholar
  17. Trans. Roy. Soc. Can., 27(III); 1–18.Google Scholar
  18. Proc. Roy. Soc. London, A, 132; 499–523.zbMATHCrossRefADSGoogle Scholar
  19. J. Fluid Mech., 36; 673–683.zbMATHCrossRefADSGoogle Scholar
  20. Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
  21. Z. A. M. M., 54, 533–540.zbMATHGoogle Scholar
  22. J. Atm. Sci., 24; 374–382.CrossRefADSGoogle Scholar
  23. Q. Appl. Math., 12; 434–435.zbMATHMathSciNetGoogle Scholar
  24. Dynamics of Nonhomogeneous Fluids. Mac Millan, New York.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Personalised recommendations