Advertisement

Miscellanea

Part of the Lecture Notes in Physics Monographs book series (LNPMGR, volume 5)

Abstract

We start here with the equation (14,21) for the function δ(x, z), which is the displacement of a particle above its equilibrium height (in the steady case).

Keywords

Free Surface Order Unity Stratify Fluid Internal Solitary Wave Isobaric Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Works Cited in the Text

  1. Proc. Roy. Soc. London A199, 239.ADSGoogle Scholar
  2. J. Fluid Mech. 25, 241–270.zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. Tellus, 13, 239–251.CrossRefADSGoogle Scholar
  4. J. Fluid Mech. 96,4, 671.CrossRefADSGoogle Scholar
  5. NBSJ. of Research 51, 133–140.zbMATHGoogle Scholar
  6. C.R. Acad. Sci. URSS, 30, 299.Google Scholar
  7. J. Fluid Mech. 50, 285.CrossRefADSGoogle Scholar
  8. J. Fluid Mech. 62, 331.zbMATHCrossRefADSGoogle Scholar
  9. The Fractal Geometry of Nature. W.H.Freeman and Company, New-York.zbMATHGoogle Scholar
  10. Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT. Press, Cambridge, Mass.Google Scholar
  11. C. R. Acad. Sci. URSS, 32, 22.Google Scholar
  12. J. Atm. Sci. vol. 19, 173–179.CrossRefADSGoogle Scholar
  13. Phys. Rev. 68, 286 (abstract only).Google Scholar
  14. Weather Prediction by Numerical Process, Dover, New-York.Google Scholar
  15. Scaling, Fractals, and Non-linear Variability in Geophysics. 1. D. Reidel, Hingham, Mass.Google Scholar
  16. J. Fluid Mech., vol. 173, pp. 357–386.CrossRefADSMathSciNetGoogle Scholar
  17. J. de Mécanique, 9, 573.zbMATHGoogle Scholar
  18. Tellus, 30, 177–184.ADSCrossRefGoogle Scholar
  19. WEIZSÄCKER, C. F. Von (1948) _ Z. Phys. 124, 614.zbMATHCrossRefADSGoogle Scholar
  20. Archiwum Mechaniki Stosowanej, 26,3, 499–509 (Warszawa).zbMATHGoogle Scholar
  21. in: “Adv. in Computational methods for boundary and interior layers”. Boole Press, ed. J.J.H. Miller. Dublin.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Personalised recommendations