Skip to main content

Function and Diversity of Arbuscular Mycorrhizae in Carbon and Mineral Nutrition

  • Chapter
Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

The function of arbuscular mycorrhizae (AM) is discussed in terms of reciprocal nutrient exchange within single pairs of symbionts. Emphasis is on carbon and phosphate nutrition and on the importance of diversity of the organisms involved. Growth of the obligate biotrophic AM fungi in roots relies on carbon transferred across interfaces between the plant and the fungus. Carbon use by the fungus is discussed in qualitative and quantitative terms. Attention is paid to the plant species-dependent variability in the formation and probably also function of root internal fungal structures where the Paris type of AM may be most important in the ecological perspective. Different fungi vary greatly in the amount of phosphorus transported to the plant. Plant identity is an important determinant of the amount of phosphate transferred from a fungus. Changes in time and space in expression of fungal and plant P transporter genes are discussed with the aim of providing a better understanding of the co-ordination of mechanisms leading to a net transfer of P from fungus to plant in the symbiosis. Future studies with single pairs of symbionts should focus on those fungi which are dominant root colonisers in the field. Careful isolation and controlled experiments with these fungi will contribute to resolving frequent discrepancies between studies in pots and in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD, Jasper D, Gazey C (1992) What is the role of VA mycorrhizal hyphae in soil? In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallington, pp 37–41

    Google Scholar 

  • Allen MF (1983) Formation of vesicular-arbuscular mycorrhizae in A triplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75: 773–776

    Article  Google Scholar 

  • Allsopp N (1998) Effect of defoliation on the arbuscular mycorrhizas of three perennial pasture and rangeland grasses. Plant Soil 202: 117–124

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124: 949–957

    Article  PubMed  CAS  Google Scholar 

  • Baon JB, Smith SE, Alston AM, Wheeler RD (1992) Phosphorus efficiency of three cereals as related to indigenous mycorrhizal infection. Aust J Agric Res 43: 479–491

    Article  CAS  Google Scholar 

  • Barber SA (1984) Soil Nutrient Bioavailability - a mechanistic approach. Wiley-Interscience, New York

    Google Scholar 

  • Bergelson JM, Crawley MJ (1988) Mycorrhizal infection and plant species diversity. Nature 334: 202

    Article  Google Scholar 

  • Blal B, Morel C, Gianinazzi-Pearson V, Fardeau JC, Gianinazzi S (1990) Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guineensis jacq.). Biol Fert Soils 9: 43–48

    Article  CAS  Google Scholar 

  • Blee KA, Anderson AJ (1998) Regulation of arbuscule formation by carbon in the plant. Plant J 16: 523–530

    Article  Google Scholar 

  • Bürkert B, Robson A (1994) 65Zn uptake in subterranean clover (Trifolium subterraneum L) by 3 vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26: 1117–1124

    Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36: 77–115

    Article  CAS  Google Scholar 

  • Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9: 205–213

    Article  Google Scholar 

  • Facelli E, Facelli J, McLaughlin MJ, Smith SE (1999) Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability using Trifolium subterraneum L. cv. Mt Barker. New Phytol 141: 535–547

    Google Scholar 

  • Function and Diversity of Arbuscular Mycorrhizae in Carbon and Mineral Nutrition 89

    Google Scholar 

  • Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99: 257–265

    Article  Google Scholar 

  • Gallaud I (1905) Etudes sur les mycorrhizes endotrophs. Rev Gen Bot 17:5–48, 66–83, 123–135,223–239,313–325,425–433, 479–500

    Google Scholar 

  • Gange AC, Ayres RL (1999) On the relation between arbuscular mycorrhizal colonisation and plant `benefit’. Oikos 87: 615–621

    Article  Google Scholar 

  • Gavito ME, Curtis PS, Mikkelsen TN, Jakobsen I (2000) Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum) plants. J Exp Bot 51: 1931–1938

    Article  PubMed  CAS  Google Scholar 

  • George E, Haussler KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70: 2130–2137

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA (1991) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of ATP hydrolysing enzyme activities in plant-fungus interfaces? New Phytol 117: 61–74

    Article  CAS  Google Scholar 

  • Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220: 207–218

    Article  CAS  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1981) Membrane-mediated decrease in root exudation responsible for inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68: 548–552

    Article  PubMed  CAS  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328: 420–422

    Article  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50: 361–389

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626–632

    Article  PubMed  CAS  Google Scholar 

  • Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in a tallgrass prairie. Ecology 80: 1187–1195

    Article  Google Scholar 

  • Hawkins H-J, Johansen A, George E (2000) Uptake, uptake mechanisms and transport of

    Google Scholar 

  • organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Google Scholar 

  • Imhof S (1999) Root morphology, anatomy and mycotrophy of the achlorophyllous Voyria aphylla (Jaq.) Pers. (Gentianaceae). Mycorrhiza 9: 33–39

    Article  Google Scholar 

  • Jakobsen I (1999) Transport of phosphorus and carbon in arbuscular mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 305–332

    Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115: 77–83

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum. 1: Spread of hyphae and phosphorus inflow into roots. New Phytol 120: 371–380

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum. 2: Hyphal transport of 32P over defined distances. New Phytol 120: 509–516

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122: 281–288.

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N-transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160: 1–9

    Article  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135: 575–586

    Article  Google Scholar 

  • Joner E, Jakobsen I (1994) Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from 32P-labelled organic matter during mineralization in soil. Plant Soil 163: 203–209

    Article  CAS  Google Scholar 

  • Joner E, Magid J, Gahoonia TS, Jakobsen I (1995) Phosphorus depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis sativus L.). Soil Biol Biochem 27: 1145–1151

    Article  CAS  Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104: 81–86

    Article  CAS  Google Scholar 

  • Joner EJ, Ravnskov S, Jakobsen I (2000) Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol Lett 22: 1705–1708

    Article  CAS  Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhiza 1 infection. New Phytol 117: 365–386

    Article  CAS  Google Scholar 

  • Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytol 148: 163–168

    Article  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (`saprophytic’) plants. Tansley review no 69. New Phytol 127: 171–216

    Article  Google Scholar 

  • Lewis DH (1973) Concepts in fungal nutrition and the origin of biotrophy. Biol Rev 48: 261–278

    Article  Google Scholar 

  • Li X-L, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilised with ammonium. New Phytol 119: 397–404

    Article  CAS  Google Scholar 

  • Liu C, Muchhal US, Uthappa M, Kononowicz AK, Ragothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116: 91–99

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterisation of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and response to colonisation by arbuscular mycorrhizal ( AM) fungi. Mol Plant Microbe Interact 11: 14–22

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London Merryweather J, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant

    Google Scholar 

  • treated with the fungicide benomyl in the field. New Phytol 132:307–311

    Google Scholar 

  • Mullen RB, Schmidt SK (1993) Mycorrhizal infection, phosphorus uptake and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizas in alpine systems. Oecologia 94: 229–234

    Article  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18: 243–270

    Article  Google Scholar 

  • Oliver AJ, Smith SE, Nicholas DJD, Wallace W, Smith FA (1983) Activity of nitrate reductase in Trifolium subterraneum: effects of mycorrhizal infection and phosphate nutrition. New Phytol 94: 63–79

    Article  CAS  Google Scholar 

  • Olsson PA, Bââth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99: 623–629

    Article  CAS  Google Scholar 

  • Olsson PA, Thingstrup I, Jakobsen I, Bath E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31: 1879–1887

    Article  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993a) Exchange of carbon and phosphorus in symbioses between cucumber and three VA mycorrhizal fungi. New Phytol 124: 481–488

    Article  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993b) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants measured by dual labelling with 32P and 33P. New Phytol 124: 489–494

    Article  CAS  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129: 611–618

    Article  Google Scholar 

  • Read DJ (2000) Links between genetic and functional diversity–a bridge too far? New Phytol 145: 363–365

    Article  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizas. Proc Natl Acad Sci USA 91: 11841–11843

    Article  PubMed  CAS  Google Scholar 

  • Function and Diversity of Arbuscular Mycorrhizae in Carbon and Mineral Nutrition 91

    Google Scholar 

  • Robinson D, Fitter AH (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50: 9–13

    CAS  Google Scholar 

  • Rosewarne GM, Barker SJ, Smith SE, Smith FA, Schachtman DP (1999) A Lycopersicon esculentum phosphate transporter (LePTJ) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol 144: 507–516

    Article  CAS  Google Scholar 

  • Sanders IR, Streitwolf-Engel R, Heijden MGA van der, Boller T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO, enrichment. Oecologia 117: 496–503

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116: 447–453

    Article  PubMed  CAS  Google Scholar 

  • Schweiger PF, Jakobsen I (1999) The role of mycorrhizas in plant P nutrition: fungal uptake kinetics and genotype variation. In: Gissel-Nielsen G, Jensen A (eds) Plant nutrition–molecular biology and genetics. Kluwer, Dordrecht, pp 277–289

    Google Scholar 

  • Sieverding E, Toro S, Mosquera O (1989) Biomass production and nutrient concentrations in spores of VA mycorrhizal fungi. Soil Biol Biochem 21: 60–72

    Article  Google Scholar 

  • Smith DC, Muscatine L, Lewis DH (1969) Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbioses. Biol Rev 44: 17–90

    Article  PubMed  CAS  Google Scholar 

  • Smith FA (2000) Measuring the influence of mycorrhizas. New Phytol 148: 4–6

    Article  Google Scholar 

  • Smith FA, Smith SE (1996) Mutualism and parasitism: diversity in function and structure in the “arbuscular” ( VA) mycorrhizal symbiosis. Adv Bot Res 22: 1–43

    Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal fungi. New Phytol 137: 373–388

    Article  Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000a) Spatial differences in acquisition of soil phosphate between the arbuscular mycorrhizal fungi S utellospora calospora and Glomus caledonium in symbiosis with Medicago truncatula. New Phytol 147: 357–366

    Article  Google Scholar 

  • Smith FA, Timonen S, Smith SE (2000b) Mycorrhizas. In: Blom CWPM, Visser EJW (eds) Root ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Rosewarne G, Ayling SM, Dickson S, Schachtman DP, Barker SJ, Reid RJ, Smith FA (1999) Phosphate transfer between vesicular-arbuscular mycorrhizal symbionts: insights from confocal microscopy, microphysiology and molecular studies. In: Lynch JP, Deikman J (eds) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic and ecosystem processes. American Society of Plant Physiologists, Rockville, pp 111–123

    Google Scholar 

  • Soberon MJ, Marinez del Rio C (1985) Cheating and taking advantage in mutualistic symbioses. In: Boucher D (ed) The biology of mutualism. Croom Helm, London, pp 192–216

    Google Scholar 

  • Son CL, Smith SE (1988) Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytol 108: 305–314

    Article  Google Scholar 

  • Staddon PL, Graves JD, Fitter AH (1999) Effect of enhanced atmospheric CO2 on mycorrhizal colonisation and phosphorus inflow in 10 herbaceous species of contrasting growth strategies. Funct Ecol 13: 190–199

    Article  Google Scholar 

  • Stribley DP, Tinker PB, Rayner JH (1980) Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytol 86: 261–266

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103: 751–765

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72

    Article  Google Scholar 

  • Wardle DA (1999) Is `sampling effect’ a problem for experiments investigating biodiversity–ecosystem function relationships? Oikos 87: 403–407

    Article  Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonisation on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21: 209–216

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobsen, I., Smith, S.E., Smith, F.A. (2003). Function and Diversity of Arbuscular Mycorrhizae in Carbon and Mineral Nutrition. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics