Skip to main content

Mycorrhizal Specificity and Function in Myco-heterotrophic Plants

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

We present an analysis of fungal specificity in myco-heterotrophic orchids and monotropes. We argue that specificity represents a continuum and can only be properly assessed using phylogenetic data. Several green orchids associate with wide phylogenetic arrays of Rhizoctonia species, and hence show little specificity, while other green orchids, and all studied achlorophyllous orchids and monotropes, associate with narrow phylogenetic groups of fungi, and hence show significant specificity. In several species, this tight specificity has been shown to apply from seed germination through adulthood under natural conditions, though not necessarily under in vitro conditions. Patterns of specificity have been correlated with patterns of fungal distribution and habitat variation in several myco-heterotrophs. However, studies of other myco-heterotrophs have shown that tight specificity is expressed even when diverse fungi co-exist with the plant. Moreover, in one case, genetic influences of the host plant have been shown to outweigh environmental influences over the patterns of specificity. Major host jumps and intraspecific host-race formation have contributed to the evolution of specialisation in several myco-heterotrophs. Some achlorophyllous orchids associate with wood-decay or parasitic fungi, but many recent studies have revealed associations with ecto-mycorrhizal fungi in orchids, monotropes, and a liverwort. Tracer studies show that autotrophic ecto-mycorrhizal host plants can provide the fixed carbon to nourish myco-heterotrophs linked by a shared fungal partner. Important outstanding questions concern recognition phenomena, the origins and evolution of specificity, the physiology and ecology of carbon exchange, and whether myco-heterotrophs interact with fungi in fundamentally different ways than do autotrophs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen TF (1990) A study of hyphal morphology in the form genus Rhizoctonia. Mycotaxon 37: 25–46

    Google Scholar 

  • Andersen TF (1996) A comparative taxonomic study of Rhizoctonia sensu lato employing morphological, ultrastructural and molecular methods. Mycol Res 100: 1117–1128

    Article  Google Scholar 

  • Andersen TF, Rasmussen HN (1996) The mycorrhizal species of Rhizoctonia. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control, Second International Symposium on Rhizoctonia, Noordwijkerhout, Netherlands, 27–30 June 1995. Kluwer, Norwell, Massachusetts, pp 379–390

    Google Scholar 

  • Bayman P, Lebron LL, Tremblay RL, Lodge DJ (1997) Variation in endophytic fungi from roots and leaves of Lepanthes ( Orchidaceae ). New Phytol 135: 143–149

    Google Scholar 

  • Berbee ML (1996) Loculoascomycete origins and evolution of filamentous ascomycete morphology based on 18S rRNA gene sequence data. Mol Biol Evol 13: 462–470

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum MR (1996) Introduction to the symposium: on the evolution of specialization. Am Nat 148: 578 - S83

    Google Scholar 

  • Bernard N (1909) L’évolution dans la symbiose. Les orchidées et leur champignons commensaux. Ann Sci Nat Bot 9: 1–196

    Google Scholar 

  • Bernays EA (1988) Host specificity in phytophagous insects: Selection pressure from generalist predators. Entomol Exp App149: 131–140

    Google Scholar 

  • Berres ME, Szabo LJ, McLaughlin DJ (1995) Phylogenetic relationships in auriculariaceous basidiomycetes based on 25S ribosomal DNA sequences. Mycologia 87: 821–840

    Article  CAS  Google Scholar 

  • Beyrle HF, Smith SE (1993) Excessive carbon prevents greening of leaves in mycorrhizal seedlings of the terrestrial orchid Orchis morio. Lindleyana 8: 97–99

    Google Scholar 

  • Bidartondo MI, Kretzer AM, Pine EM, Bruns TD (2000) High root concentration and uneven ecto-mycorrhizal diversity near Sarcodes sanguinea (Ericaceae): a cheater that stimulates its victims? Am J Bot 87: 1783–1788

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman E (1960) Monotropa hypopitys L. - an epiparasite on tree roots. Physiol Plant 13:308–327

    Google Scholar 

  • Bruns TD, Read DJ (2000) Germination of Sarcodes sanguinea and Pterospora andromedea seeds is stimulated by the Rhizopogon species associated with the roots of adult plants. New Phytol 148: 335–342

    Article  Google Scholar 

  • Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbett DS et al (1992) Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogenet Evol 1: 231–241

    Article  PubMed  CAS  Google Scholar 

  • Bruns TD, Szaro TM, Gardes M, Cullings KW, Pan JJ et al (1998) A sequence database for the identification of ecto-mycorrhizal basidiomycetes by phylogenetic analysis. Mol Ecol 7: 257–272

    Article  CAS  Google Scholar 

  • Burgeff H (1932) Saprophytismus und Symbiose. Studien an tropischen Orchideen. Fischer, Jena, 249 pp

    Google Scholar 

  • Burgeff H (1936) Die Samenkeimung der Orchideen. Fischer, Jena, 312 pp

    Google Scholar 

  • Burgeff H (1959) Mycorrhiza of orchids. In: Withner CL (ed) The orchids: a scientific survey. Ronald Press, New York, pp 361–395

    Google Scholar 

  • Campbell EO (1962) The mycorrhiza of Gastrodia cunninghamii Hook Trans R Soc N Z 1: 289–296

    Google Scholar 

  • Campbell EO (1963) Gastodia minor Petrie, an epiparasite of Manuka. Trans R Soc N Z 2:73–81

    Google Scholar 

  • Campbell EO (1964) The fungal association in a colony of Gastrodia sesamoides R. Br Trans R Soc N Z 2: 237–246

    Google Scholar 

  • Campbell EO (1970a) The fungal association of Yoania australis. Trans R Soc N Z Biol Sci 12: 5–12

    Google Scholar 

  • Campbell EO (1970b) Morphology of the fungal association in three species of Corallorhiza in Michigan. Mich Bot 9: 108–113

    Google Scholar 

  • Campbell EO (1971) Notes on the fungal association of two Monotropa species in Michigan. Mich Bot 10: 63–67

    Google Scholar 

  • Carroll G (1995) Forest endophytes: pattern and process. Can J Bot 73: S1316 - S1324

    Article  Google Scholar 

  • Castellano M, Trappe J (1985) Mycorrhizal associations of five species of Monotropoidae in Oregon. Mycologia 77: 499–502

    Article  Google Scholar 

  • Cha JY, Igarashi T (1996) Armillaria jezoensis, a new symbiont of Galeola septentrionalis ( Orchidaceae) in Hokkaido. Mycoscience 37: 21–24

    Google Scholar 

  • Clay K (1993) The ecology and evolution of endophytes. Agric Ecosyst Environ 44:39–64 Clements MA (1988) Orchid mycorrhizal associations. Lindleyana 3: 73–86

    Google Scholar 

  • Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialization within a lineage of ecto-mycorrhizal epiparasites. Nature 379: 63–66

    Article  CAS  Google Scholar 

  • Currah RS, Sherburne R (1992) Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas. Mycol Res 96: 583–587

    Article  Google Scholar 

  • Currah RS, Sigler L, Hambleton S (1987) New records and new taxa of fungi from the mycorrhizae of terrestrial orchids of Alberta. Can J Bot 65: 2473–2482

    Article  Google Scholar 

  • Currah RS, Hambleton S, Smreciu A (1988) The mycorrhizae and mycorrhizal fungi of Calypso bulbosa ( Orchidaceae ). Am J Bot 75: 737–750

    Google Scholar 

  • Currah RS, Smreciu EA, Hambleton S (1990) Mycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum ( Orchidaceae ). Can J Bot 68: 1171–1181

    Google Scholar 

  • Currah RS, Zelmer CD, Hambleton S, Richardson KA (1997) Fungi from orchid mycorrhizas. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives, vol VII. Kluwer, Boston, pp 117–170

    Google Scholar 

  • Curtis JT (1937) Non-specificity of orchid mycorrhizal fungi. Proc Soc Exp Biol Med 36: 43–44

    Google Scholar 

  • Curtis JT (1939) The relation of specificity of orchid mycorrhizal fungi to the problem of symbiosis. Am J Bot 26: 390–398

    Article  Google Scholar 

  • Downie DG (1943) Source of the symbiont of Goodyera repens. Trans Bot Soc Edinb 33: 383–390

    Article  Google Scholar 

  • Drehmel D, Moncalvo J-M, Vilgalys R (1999) Molecular phylogeny of Amanita based on large-subunit ribosomal DNA sequences: implications for taxonomy and character evolution. Mycologia 91: 610–618

    Article  CAS  Google Scholar 

  • Dressler RL (1993) Phylogeny and Classification of the Orchid Family. Dioscorides Press, Portland, 314 pp

    Google Scholar 

  • Dudderidge JA, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizas in Monotropa hypopitys L. New Phytol 92: 203–214

    Article  Google Scholar 

  • Farrell BD, Mitter C, Futuyma DJ (1992) Diversification at the insect-plant interface. Bio-science 42: 34–42

    Google Scholar 

  • Feibelman TP, Doudrick RL, Cibula WG, Bennett JW (1997) Phylogenetic relationships within the Cantharellaceae inferred from sequence analysis of the nuclear large subunit rDNA. Mycol Res 101: 1423–1430

    Article  CAS  Google Scholar 

  • Furman TE, Trappe JM (1971) Phylogeny and ecology of mycotrophic achlorophyllous angiosperms. Q Rev Biol 46: 219–225

    Article  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ecto-mycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Can J Bot 74: 1572–1583

    Article  Google Scholar 

  • Hadley G (1970) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol 69: 1015–1023

    Article  Google Scholar 

  • Hadley G (1982) Orchid Mycorrhiza. In: Arditti J (ed) Orchid biology: reviews and perspectives, vol II. Cornell Univ Press, Ithaca, pp 83–118

    Google Scholar 

  • Hamada M (1939) Studien über die Mykorrhiza von Galeola septentrionalis Reichb. f. neuer Fall der Mykorrhiza-Bildung durch intraradicale Rhizomorpha. Jpn J Bot 10: 151–211

    Google Scholar 

  • Hamada M, Nakamura SI (1963) Wurzelsymbiose von Galeola altissima Reichb. E, einer chlorophyllfreien Orchidee, mit dem holzzerstörenden Pilz Hymenochate crocicreas. Berk Et Br Sci Rep Tohoku Univ Ser IV (Biol) 29: 227–238

    Google Scholar 

  • Harvais G (1974) Notes on the biology of some native orchids of Thunder Bay, their endophytes and symbionts. Can J Bot 52: 451–460

    Article  Google Scholar 

  • Harvais G, Hadley G (1967) The relation between host and endophyte in orchid mycorrhiza. New Phytol 66: 205–215

    Article  Google Scholar 

  • Hayakawa S, Uetake Y, Ogoshi A (1999) Identification of symbiotic rhizoctonias from naturally occurring protocorms and roots of Dactylorhiza aristata ( Orchidaceae ). J Fac Agric Hokkaido Univ 69: 129–141

    Google Scholar 

  • Hibbett DS, Pine EM, Langer E, Langer G, Donoghue MJ (1997) Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc Natl Acad Sci USA 94: 12002–12006

    Article  PubMed  CAS  Google Scholar 

  • Hibbett DS, Hansen K, Donoghue MJ (1998) Phylogeny and biogeography of Lentinula inferred from an expanded rDNA dataset. Mycol Res 102: 1041–1049

    Article  CAS  Google Scholar 

  • Hopple JS, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Copri-nus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophylly. Mol Phylogenet Evol 13: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21: 243–273

    Article  Google Scholar 

  • Johnson J, Vilgalys R (1998) Phylogenetic systematics of Lepiota sensu lato based on nuclear large subunit rDNA evidence. Mycologia 90: 971–979

    Article  CAS  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140: 295–310

    Article  Google Scholar 

  • Karen 0, Nylund J-E (1997) Effects of ammonium sulphate on the community structure and biomass of ecto-mycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can J Bot 75: 1628–1642

    Article  CAS  Google Scholar 

  • Kasuya MCM, Masaka K, Igarashi T (1995) Mycorrhizae of Monotropastrum globosum growing in a Fagus crenata forest. Mycoscience 36: 461–464

    Article  Google Scholar 

  • Kretzer AM, Bidartondo MI, Grubisha L, Spatafora JW, Szaro TM, Bruns TD (2000) Regional specialization of Sarcodes sanguinea (Ericaceae) on a single fungal symbiont from the Rhizopogon ellenae ( Rhizopogonaceae) species complex. Am J Bot 87: 1778–1782

    Google Scholar 

  • Kristiansen KA, Taylor DL, Kjoller R, Rasmussen HN, Rosendahl S (2001) Identification of mycorrhizal fungi from Dactylorhiza majalis (Orchidaceae) based on PCR, SSCP and sequencing of Mitochondrial ribosomal LsDNA from single pelotons. Mol Ecol 10: 2089–2093

    Google Scholar 

  • Kusano S (1911) Gastrodia elata and its symbiotic association with Armillaria mellea. J Coll Agric Jpn 9:1–73

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (`saprophytic’) plants. Tansley review no 69. New Phytol 127: 171–216

    Article  Google Scholar 

  • Lefevre CK, Carter CM, Molina R (1998) Morphological and molecular evidence of specificity between Allotropa virgata and Tricholoma magnivelare. In: Second International Conference on Mycorrhiza, Poster Presentation, Program and Abstracts. Uppsala, Sweden, p 107

    Google Scholar 

  • Martin JF (1985) Sur la mycorhization de Monotropa hypopithys par quelques espèces du genre Trichloma. Bull Soc Mycol France 101: 249–256

    Google Scholar 

  • Martin JF (1986) Mycorhization de Monotropa uniflora L. par des Russulaceae. Bull Soc Mycol Fr102: 155–159

    Google Scholar 

  • Masuhara G, Katsuya K (1994) In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames. var. amoena (M. Bieberstein) Hara ( Orchidaceae ). New Phytol 127: 711–718

    Google Scholar 

  • Masuhara G, Katsuya K, Yamaguchi K (1993) Potential for symbiosis of Rhizoctonia solani and binucleate Rhizoctonia with seeds of Spiranthes sinensis var. amoena in vitro. Mycol Res 97: 746–752

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000a) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ecto-mycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145: 539–548

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2000b) Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida Cha-tel and characterisation of its mycorrhizal fungi. New Phytol 145: 523–537

    Article  Google Scholar 

  • Milligan MJ, Williams PG (1988) The mycorrhizal relationship of multinucleate rhizoctonias from non-orchids with Microtis ( Orchidaceae ). New Phytol 108: 205–209

    Google Scholar 

  • Mitchell AD, Bresinsky A (1999) Phylogenetic relationships of Agaricus species based on ITS-2 and 28S ribosomal DNA sequences. Mycologia 91: 811–819

    Article  CAS  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Moore RT (1987) The genera of Rhizoctonia-like fungi: Ascorhizoctonia, Ceratorhiza gen. nov., Epulorhiza gen. nov., Moniliopsis, and Rhizoctonia. Mycotaxon 29: 91–99

    Google Scholar 

  • Moore RT (1996) The dolipore/parenthesome septum in modern taxonomy. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Second international symposium on Rhizoctonia, June 1995, The Netherlands. Kluwer, Boston, pp 13–34

    Google Scholar 

  • Muller WH, Stalpers JA, Van Aelst AC, Van Der Krift TP, Boekhout T (1998) Field emission gun-scanning electron microscopy of septal pore caps of selected species in the Rhizoctonia s.l. complex. Mycologia 90: 170–179

    Article  Google Scholar 

  • Nishikawa T, Ui T (1976) Rhizoctonias isolated from wild orchids in Hokkaido. Trans Mycol Soc Jpn 17: 77–84

    Google Scholar 

  • O’Donnell K, Cigelnik E, Weber NS, Trappe JM (1997) Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia 89: 48–65

    Article  Google Scholar 

  • Ogoshi A (1987) Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annu Rev Phytopathol 25: 125–143

    Article  Google Scholar 

  • Perkins AJ, McGee PA (1995) Distribution of the orchid mycorrhizal fungus, Rhizoctonia solani, in relation to its host, Pterostylis acuminata, in the field. Aust J Bot 43: 565–575

    Article  Google Scholar 

  • Perkins AJ, Masuhara G, McGee PA (1995) Specificity of the Associations Between Microtis parviflora ( Orchidaceae) and its mycorrhizal fungi. Aust J Bot 43: 85–91

    Google Scholar 

  • Peterson RL, Uetake Y, Zelmer C (1998) Fungal symbiosis with orchid protocorms. Symbiosis 25: 29–55

    Google Scholar 

  • Petrini O, Petrini LE, Rodrigues KF (1995) Xylariaceous endophytes: an exercise in bio-diversity. Fitopatol Brasil 20: 531–539

    Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites, vol 15. Princeton Univ Press, Princeton

    Google Scholar 

  • Ramsay RR, Dixon KW, Sivasithamparam K (1986) Patterns of infection and endophytes associated with western Australian orchids. Lindleyana 1: 203–214

    Google Scholar 

  • Ramsay RR, Sivasithamparam K, Dixon KW (1987) Anastomosis groups among rhizoctonia-like endophytic fungi in southwestern Australian Pterostylis species ( Orchidaceae ). Lindleyana 2: 161–166

    Google Scholar 

  • Ramsbottom J (1922) Orchid Mycorrhiza. Trans Br Mycol Soc 12: 28–61

    Article  Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge Univ Press, New York

    Book  Google Scholar 

  • Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application to terrestrial orchids. Am J Bot 80: 1374–1378

    Article  Google Scholar 

  • Rasmussen HN, Whigham DF (1998) The underground phase: A special challenge in studies of terrestrial orchid populations. Bot J Linnean Soc 126: 49–64

    Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in `lower’ land plants. Philos Trans R Soc Lond B 355: 815–831

    Article  CAS  Google Scholar 

  • Robinson D, Fitter A (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50: 9–13

    CAS  Google Scholar 

  • Salmia A (1988) Endomycorrhizal fungus in chlorophyll-free and green forms of the terrestrial orchid Epipactis helleborine. Karstenia 28: 3–18

    Google Scholar 

  • Salmia A (1989) Features of endomycorrhizal infection of chlorophyll-free and green forms of Epipactis helleborine (Orchidaceae). Ann Bot Fenn 26: 15–26

    Google Scholar 

  • Schmid E, Oberwinkler F (1993) Mycorrhiza-like interaction between the achlorophyllous gametophyte of Lycopodium clavatum L. and its fungal endophyte studied by light and electron microscopy. New Phytol 124: 69–81

    Article  Google Scholar 

  • Schmid E, Oberwinkler F (1994) Light and electron microscopy of the host-fungus interaction in the achlorophyllous gametophyte of Botrychium lunaria. Can J Bot 72: 182–188

    Article  Google Scholar 

  • Schmid E, Oberwinkler F (1995) A light-and electron-microscopic study on a vesiculararbuscular host-fungus interaction in gametophytes and young sporophytes of the Gleicheniaceae ( Filicales ). New Phytol 129: 317–324

    Google Scholar 

  • Schmid E, Oberwinkler F (1996) Light and electron microscopy of a distinctive VA mycorrhiza in mature sporophytes of Ophioglossum reticulatum. Mycol Res 100: 843–849

    Article  Google Scholar 

  • Schmid E, Oberwinkler F, Gomez LD (1995) Light and electron microscopy of a host-fungus interaction in the roots of some epiphytic ferns from Costa Rica. Can J Bot 73: 991–996

    Article  Google Scholar 

  • Sen R, Hietala AM, Zelmer CD (1999) Common anastomosis and internal transcribed spacer RFLP groupings in binucleate Rhizoctonia isolates representing root endophytes of Pinus sylves tris, Ceratorhiza spp. from orchid mycorrhizas and a phytopathogenic anastomosis group. New Phytol 144: 331–341

    Article  CAS  Google Scholar 

  • Smith SE (1966) Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytol 65: 488–499

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press

    Google Scholar 

  • San Diego Stone JK, Sherwood MA, Carroll GC (1996) Canopy microfungi: function and diversity. Northwest Sci 70: 37–45

    Google Scholar 

  • Swann EC, Taylor JW (1993) Higher taxa of Basidiomycetes: an 18S rRNA gene perspective. Mycologia 85: 923–936

    Article  CAS  Google Scholar 

  • Taylor DL (1997) The evolution of myco-heterotrophy and specificity in some North American orchids. PhD Thesis, Univ California, Berkeley

    Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of ecto-mycorrhizal mutualism by two non-photosynthetic orchids. Proc Natl Acad Sci USA 94: 4510–4515

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999a) Community structure of ecto-mycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8: 1837–1850

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999b) Population, habitat and genetic correlates of mycorrhizal specialization in the `cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8: 1719–1732

    Article  Google Scholar 

  • Terashita T (1982) Fungi inhabiting wild orchids in Japan (II). Isolation of symbionts from Spiranthes sinensis var. amoena. Trans Mycol Soc Jpn 23: 319–328

    Google Scholar 

  • Terashita T (1996) Biological species of Armillaria symbiotic with Galeola septentrionalis. Nippon Kingakukai Kaiho 37: 45–49

    Google Scholar 

  • Thompson IN (1994) The coevolutionary process. Univ Chicago Press, Chicago Tokunaga Y, Nakagawa T (1974) Mycorrhiza of orchids in Japan. Trans Mycol Soc Jpn 15: 121–133

    Google Scholar 

  • Tu CC, Kimbrough JW, Aldrich HC (1977) Cytology and ultrastructure of Thanatephorus cucumeris and related taxa of the Rhizoctonia complex. Can J Bot 55: 2419–2436

    Article  Google Scholar 

  • Uetake Y, Ishizaka N (1996) Cytochemical localization of adenylate cyclase activity in the symbiotic protocorms of Spiranthes sinensis. Mycol Res 100: 105–112

    Article  CAS  Google Scholar 

  • Uetake Y, Peterson RL (1997) Changes in actin filament arrays in protocorm cells of the orchid species, Spiranthes sinensis, induced by the symbiotic fungus Ceratobasidium cornigerum. Can J Bot 75: 1661–1669

    Article  Google Scholar 

  • Uetake Y, Peterson RL (1998) Association between microtubules and symbiotic fungal hyphae in protocorm cells of the orchid species, Spiranthes sinensis. New Phytol 140: 715–722

    Article  Google Scholar 

  • Uetake Y, Kobayashi K, Ogoshi A (1992) Ultrastructural changes during the symbiotic development of Spiranthes sinensis (Orchidaceae) protocorms associated with binucleate Rhizoctonia anastomosis group C. Mycol Res 96: 199–209

    Article  Google Scholar 

  • Uetake Y, Farquhar ML, Peterson RL (1997) Changes in microtubule arrays in symbiotic orchid protocorms during fungal colonization and senescence. New Phytol 35: 701–709

    Article  Google Scholar 

  • Umata H (1995) Seed germination of Galeola altissima, an achlorophyllous orchid, with aphyllophorales fungi. Mycoscience 36: 369–372

    Article  Google Scholar 

  • Umata H (1997a) Formation of endomycorrhizas by an achlorophyllous orchid, Erythrorchis ochobiensis, and Auricularia polytricha. Mycoscience 38: 335–339

    Article  Google Scholar 

  • Umata H (1997b) In vitro germination of Erythrorchis ochobiensis (Orchidaceae) in the presence of Lyophyllum shimeji, an ecto-mycorrhizal fungus. Mycoscience 38: 355–357

    Article  Google Scholar 

  • Umata H (1998) A new biological function of shiitake mushroom, Lentinula edodes, in a myco-heterotrophic orchid, Erythrorchis ochobiensis. Mycoscience 39: 85–88

    Article  Google Scholar 

  • Warcup JH (1971) Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol 70: 41–46

    Article  Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87: 371–381

    Article  Google Scholar 

  • Warcup JH (1985) Rhizanthella gardneri (Orchidaceae), its rhizoctonia endophyte and close association with Melaleuca uncinata (Myrtaceae) in Western Australia. New Phytol 99:273–280

    Google Scholar 

  • Warcup JH (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110: 227–231

    Article  Google Scholar 

  • Warcup JH (1991) The Rhizoctonia endophytes of Rhizanthella (Orchidaceae). Mycol Res 95: 656–659

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1966) Perfect states of some rhizoctonias. Trans Br Mycol Soc 49: 427–435

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of rhizoctonias associated with orchids. New Phytol 66: 631–641

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1971) Perfect states of rhizoctonias associated with orchids. II. New Phytol 70: 35–40

    Google Scholar 

  • Warcup JH, Talbot PHB (1980) Perfect states of rhizoctonias associated with orchids. III. New Phytol 86: 267–272

    Google Scholar 

  • Wells K (1994) Jelly fungi, then and now. Mycologia 86: 18–48

    Article  Google Scholar 

  • Williams PG (1985) Orchidaceous rhizoctonias in pot cultures of vesicular-arbuscular mycorrhizal fungi. Can J Bot 63: 1329–1333

    Article  Google Scholar 

  • Williams PG, Thilo E (1989) Ultrastructural evidence for the identity of some multinucleate rhizoctonias. New Phytol 112: 513–518

    Article  Google Scholar 

  • Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89: 199–219

    Article  Google Scholar 

  • Zelmer CD, Currah RS (1995) Evidence for a fungal liaison between Corallorhiza trifida (Orchidaceae) and Pinus contorta ( Pinaceae ). Can J Bot 73: 862–866

    Google Scholar 

  • Zelmer CD, Cuthbertson L, Currah RS (1996) Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience 37: 439–448

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, D.L., Bruns, T.D., Leake, J.R., Read, D.J. (2002). Mycorrhizal Specificity and Function in Myco-heterotrophic Plants. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics