Skip to main content

Evidence of the First Genetic Activity Required in Axolotl Development

  • Chapter
Differentiation and Neoplasia

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 11))

Abstract

Early development of an amphibian egg does not depend on the genetic activity of its nuclei. Rather, early development is guided by a stockpile of gene products accumulated during oogenesis. Later, the zygotic genome participates in development and it is only then that one can detect, in a progressive manner, the intervention of the individual’s own genome for any particular developmental event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brachet J., Denis H.: Effects of actinomycin D on morphogenesis. Nature (London) 198, 205–206 (1963).

    Article  CAS  Google Scholar 

  • Brachet J., Hubert E., Lievens A.: The effects of α-amanitin and rifampicin on amphibian egg development. Rev. Suisse Zool. 79, 47–63 (1972).

    Google Scholar 

  • Briggs R., Green E.V., King T.J.: An investigation of the capacity for cleavage and differentiation in Rana pipiens eggs lacking “functional” chromosomes. J. Exp. Zool. 116, 455–500 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Briggs R., Signoret J., Humphrey R.R.: Transplantation of nuclei of various cell types from neurulae of the Mexican Axolotl. Dev. Biol. 10, 233–246 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Chen P.S.: Biochemistry of nucleo-cytoplasmic interactions in morphogenesis. In: The Biochemistry of Animal Development, Vol. II (ed. R. Weber), pp. 115–191. New York-London: Academic Press 1967.

    Google Scholar 

  • Hennen S.: Chromosomal and embryological analyses of nuclear changes occurring in embryos derived from transfers of nuclei between Rana pipiens and Rana sylvatica. Dev. Biol. 6, 133–183 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Signoret J.: La cinétique cellulaire au cours de la segmentation du germe d’Axolotl: Proposition d’un modèle statistique. J. Embryol. Exp. Morphol. 42, 4–14 (1977).

    Google Scholar 

  • Signoret J., Lefresne J.: Contribution à l’étude de la segmentation de l’oeuf d’Axolotl. I. Définition de la transition blastuléenne. Ann. Embryol. Morphol. 4, 113–123 (1971).

    Google Scholar 

  • Signoret J., Lefresne J.: Le cycle cellulaire au cours de la segmentation de germe d’Axolotl. Bull. Soc. Zool. Fr. 101, 123–127 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Signoret, J. (1980). Evidence of the First Genetic Activity Required in Axolotl Development. In: McKinnell, R.G., DiBerardino, M.A., Blumenfeld, M., Bergad, R.D. (eds) Differentiation and Neoplasia. Results and Problems in Cell Differentiation, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38267-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38267-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11561-9

  • Online ISBN: 978-3-540-38267-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics