Skip to main content

A Fuzzy Edge-Dependent Interpolation Algorithm

  • Chapter
Soft Computing in Image Processing

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 210))

Abstract

Interpolation of images to achieve a higher resolution is required in many applications such as medical and satellite imaging and video format conversion. The resolution improvement provides more image details which are critical to make diagnosis, to distinguish an object or to generate high definition television (HDTV) signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. C. Chen and R. J. P. de Figueiredo. Two-dimensional interpolation by generalized spline filters based on partial differential equation image models. IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, no.3, pp. 631-642, 1985

    Article  Google Scholar 

  2. M. User, A. Aldroubi, and M. Eden. Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Machine Intell., vol.13, no.3, pp. 277-285, 1991

    Article  Google Scholar 

  3. E. Maeland. On the comparison of interpolation methods. IEEE Trans. Medical Imaging, vol. 7, pp. 213-217, 1988

    Article  Google Scholar 

  4. T. M. Lehmann, C. Gonner, and K. Spitzer. Survey: Interpolation methods in medical image processing. IEEE Trans. Medical Imaging, vol. 18, pp. 1049-1075, 1999

    Article  Google Scholar 

  5. S. W. Lee and J. K. Paik. Image interpolation using fast B-spline filtering. in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, ICASSP, vol. 5, pp. 177-180, 1993

    Google Scholar 

  6. G. Ramponi. Warped distance for space-variant linear image interpolation. IEEE Trans. Image Processing, vol. 8, pp. 629-639, 1999

    Article  Google Scholar 

  7. K. Jensen and D. Anastasio. Subpixel edge localization and the interpolation of still images. IEEE Trans. Image Processing, vol. 4, pp. 285-295, 1995

    Article  Google Scholar 

  8. J. Allebach and P. W. Wong. Edge-directed interpolation. in Proc. IEEE Int. Conf. Image Processing, ICIP, pp. 707-710, 1996

    Google Scholar 

  9. S. G. Chang, Z. Cvetkovic, and M. Vetterli. Resolution enhancement of images using wavelet transform extrema interpolation. in IEEE Proc. Int. Conf. Acoustics, Speech, Signal Processing, ICASSP, pp. 2379-2382, 1995

    Google Scholar 

  10. S. Baker and T. Kanade. Limits on super-resolution and how to break them. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp. 1167-1183, 2002

    Article  Google Scholar 

  11. N. Plaziac. Image interpolation using neural networks. IEEE Trans. Image Processing, vol. 8, no. 11, pp. 1647-1651, 1999

    Article  Google Scholar 

  12. F. Michaud, C. T. Le Dinh and G. Lachiver. Fuzzy Detection of Edge-Direction for Video Line Doubling. IEEE Trans. on Circuits and Systems for Video Technology, vol.7, no.3, pp. 539-542, 1997

    Article  Google Scholar 

  13. H. C. Ting and H. M. Hang. Spatially adaptive interpolation of digital images using fuzzy inference. in Proc. SPIE, vol. 27, pt.3, pp. 1206-17, 1996

    Google Scholar 

  14. N. Shezaf, H. Abromov-Segal, I. Sutskoner and R. Bar-Sella. Adaptive low complexity algorithm for image zooming at fractional scaling ratio. in Proc. 21st IEEE Convention of the Electrical and Electronic Engineers, pp. 253-256, 2000

    Google Scholar 

  15. T. Aso, N. Suetake and T. Yamakawa. A code-reduction technique for an image enlargement by using a som-based fuzzy interpolation. in Proc. 9th Int. Conf. on Neural Information Processing (ICONIP02), vol.3, pp. 1281-86, 2002

    Google Scholar 

  16. T. Doyle and M. Looymans. Progressive scan conversion using edge information. in Proc. 3rd Int. Workshop on HDTV, pp. 711-721, Torino, Italy, 1989

    Google Scholar 

  17. M. H. Lee, J. H. Kim, J. S. Lee, K.K. Ryu and D. Song. A new algorithm for interlaced to progressive scan conversion based on directional correlations and its IC design. IEEE Trans. on Consumer Electronics, vol.40, no.2, pp. 119-129, 1994

    Article  Google Scholar 

  18. C. J. Kuo, C. Liao and C. C. Lin. Adaptive interpolation technique for scanning rate conversion. IEEE Trans. on Circuits and Systems for Video Technology, vol.6, no.3, pp. 317-321, 1996

    Article  Google Scholar 

  19. H. Y. Lee, J. W. Park, T. M. Bae, S. U. Choi and Y. H. Ha. Adaptive scan rate up-conversion system based on human visual characteristics. IEEE Trans. on Consumer Electronics, vol.46, no.4, pp. 999-1006, 2000

    Article  Google Scholar 

  20. J. Salonen and S. Kalli. Edge adaptive interpolation for scanning rate conversion. in Signal Processing of HDTV IV, Elsevier, pp. 757-764, 1993

    Google Scholar 

  21. R. Simonetti, A.P. Filisan, S. Carrato, G. Ramponi and G. Sicuranza. A deinterlacer for IQTV receivers and multimedia applications. IEEE Trans. on Consumer Electronics, vol.39, no.3, pp. 234-240, 1993

    Article  Google Scholar 

  22. G. De Haan and R.Lodder. De-interlacing of video data using motion vector and edge information. in Proc. IEEE Int. Conf. on Consumer Electronics (ICCE), pp. 70-71, Los Angeles, USA, 2002

    Google Scholar 

  23. Y. L. Chang, S. F. Lin and L. G. Chen. Extended intelligent edge-based line average with its implementation and test method. in Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), vol.2, pp. 341-344, Vancouver, Canada, 2004

    Google Scholar 

  24. H. Yoo and J. Jeong. Direction-oriented interpolation and its application to de-interlacing. IEEE Trans. on Consumer Electronics, vol.48, no.4, pp. 954-962, 2002

    Google Scholar 

  25. M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Systems, vol.1, no.1, pp. 7-31, 1993

    Article  Google Scholar 

  26. F. J. Moreno-Velo, I. Baturone, R. Senhadji and S. Sánchez-Solano. Tuning complex fuzzy systems by supervised learning algorithms, in Proc. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE2003), pp. 226-231, 2003

    Google Scholar 

  27. F. J. Moreno-Velo, I. Baturone, S. Sánchez-Solano, A. Barriga. Rapid Design of Complex Fuzzy Systems with XFUZZY, in Proc. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE2003), pp. 342-347, 2003

    Google Scholar 

  28. G. De Haan and E.B. Bellers. De-interlacing-An overview. Proc. of the IEEE, vol. 86, pp. 1839-1857, 1988

    Article  Google Scholar 

  29. Genesis Microchip, Inc., Preliminary data sheet of Genesis gmVLD8, 8 bit digital videoline doubler, version 1.0, 1996

    Google Scholar 

  30. M. Weston. Interpolating lines of video signals. US-patent 4, pp. 789-893, 1998

    Google Scholar 

  31. J. W. Woods and S.-C.Han. Hierarchical motion compensated de-interlacing, in Proc. SPIE, vol. 1605, pp. 805-810, 1991

    Article  Google Scholar 

  32. F. M. Wang, D. Anastassiou, and A. N. Netravali. Time-recursive deinterlacing for IDTV and pyramid coding, Signal Process.: Image Commun. 2, pp. 365-374, 1990

    Article  Google Scholar 

  33. M. Zhao and G. De Haan. Content Adaptive Vertical Temporal Filtering for De-interlacing. in Proc. 9th International Symposium on Consumer Electronics, pp. 69-73, 2005

    Google Scholar 

  34. G. Chen and R. J. P. de Figueiredo. A unified approach to optimal image interpolation problems based on linear partial differential equation models. IEEE Trans. Image Processing, vol.2, no.1, pp. 41-49, 1993

    Article  Google Scholar 

  35. R. G. Keys. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, no. 6, pp. 1153-1160, 1981

    Article  MathSciNet  Google Scholar 

  36. S. C. Park, M.K. Park and M.G. Kang. Super-Resolution Image Reconstruction: A technical overview. IEEE Signal Processing Magazine, vol.3, pp.21-36, 2003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Brox, P., Baturone, I., Sánchez-Solano, S. (2007). A Fuzzy Edge-Dependent Interpolation Algorithm. In: Nachtegael, M., Van der Weken, D., Kerre, E.E., Philips, W. (eds) Soft Computing in Image Processing. Studies in Fuzziness and Soft Computing, vol 210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38233-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38233-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38232-4

  • Online ISBN: 978-3-540-38233-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics