Advertisement

Periodic Stimulation

  • Peter A. Tass
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

The effects of periodic stimuli on rhythmic biological activity were experimentally studied in detail in a variety of physiological paradigms. A number of studies were dedicated, for instance, to the entrainment of the respiration to a mechanical ventilator (cf. Fallert and Mühlemann 1971, Vibert, Caille, Segundo 1981, Baconnier et al. 1983, Petrillo, Glass, Trippenbach 1983, Petrillo and Glass 1984) and to periodic electrical stimulation of cardiac pacemaker tissue (cf. Reid 1969, Levy, Iano, Zieske 1972, Van der Tweel, Meijler, Van Capelle 1973, Jalife and Moe 1976, 1979, Ypey, Van Meerwijk, DeHaan 1982, Guevara, Glass, Shrier 1981, Glass et al. 1983, Glass et al. 1984, Jalife and Michaels 1985, Guevara, Shrier, Glass 1988). Other authors investigated the periodic forcing of circadian oscillators (Pittendrigh 1965, Winfree 1980), of neurons (Perkel et al. 1964, Pinsker 1977, Guttman, Feldman, Jakobsson 1980) and of tremor activity (Elble and Koller 1990, Elble, Higgins, Hughes 1992).

Keywords

J033 9705D Pacemaker Tissue Periodic Electrical Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arnold, V.I. (1983): Geometrical methods in the theory of Ordinary Differential Equations, Springer, BerlinzbMATHCrossRefGoogle Scholar
  2. Ayers, A.L., Selverston, A.I. (1979): Monosynaptic entrainment of an endogenous pacemaker network: A cellular mechanism for von Holst’s magnet effect, J. Comp. Physiol. 129, 5–17Google Scholar
  3. Baconnier, P., Benchetrit, G., Demongeot, J., Pham Dinh, T. (1983): Simulation of the entrainment of the respiratory rhythm by two conceptually different models. In: Rhythms in Biology and Other Fields of Application, Cosnard, M., Demongeot, J., Le Breton, A. (eds.), Springer, Berlin, 2–16CrossRefGoogle Scholar
  4. Creutzfeldt, O.D. (1983): Cortex Cerebri, Springer, BerlinCrossRefGoogle Scholar
  5. Eccles, J., Dimitrijevic, M.R. (1985): Upper motor neuron functions and dysfunctions, Karger, BaselGoogle Scholar
  6. Elble, R.J., Koller, W.C. (1990): Tremor, John Hopkins University Press, BaltimoreGoogle Scholar
  7. Elble, R.J., Higgins, C., Hughes, L. (1992): Phase resetting and frequency entrainment of essential tremor, Experimental Neurology 116, 355–361CrossRefGoogle Scholar
  8. Fallert, M., Mühlemann, R. (1971): Der Hering—Breuer Reflex bei künstlicher Beatmung des Kaninchens. I. Die Auslösung der reflektorischen Inspirationen durch den Respirator, Pfluegers Arch. 330, 162–174CrossRefGoogle Scholar
  9. Glass, L., Mackey, M.C. (1988): From Clocks to Chaos. The Rhythms of Life,Princeton University PressGoogle Scholar
  10. Glass, L., Guevara, M.R., Shrier, A., Perez, R. (1983): Bifurcation and Chaos in a periodically stimulated cardiac oscillator, Physica D 7, 89–101ADSCrossRefGoogle Scholar
  11. Glass, L., Guevara, M.R., Bélair, J., Shrier, A. (1984): Global bifurcations of a periodically forced biological oscillator, Phys. Rev. 29, 1348–1357Google Scholar
  12. Guckenheimer, J., Holmes, P. (1990): Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Berlin, HeidelbergGoogle Scholar
  13. Guevara, M.R., Glass, L., Shrier, A. (1981): Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells, Science 214, 1350–1353ADSCrossRefGoogle Scholar
  14. Guevara, M.R., Shrier, A., Glass, L. (1988): Phase-locked rhythms in periodically stimulated heart cell aggregates, Am. J. Physiol. 254, H1 — H10Google Scholar
  15. Guttman, R., Feldman, L., Jakobsson, E. (1980): Frequency entrainment of squid axon membrane, J. Memb. Biol. 56, 104–118CrossRefGoogle Scholar
  16. Haken, H. (1977): Synergetics. An Introduction, Springer, Berlin; (1983): Advanced Synergetics, Springer, BerlinGoogle Scholar
  17. Hoppensteadt, F.C. (1986): An Introduction to the Mathematics of Neurons, Cambridge University Press, New YorkzbMATHGoogle Scholar
  18. Jalife, J., Moe, G.K. (1976): Effect of electrotonic potential on pacemaker activity of canine Purkinje fibers in relation to parasystole, Circ. Res. 39, 801–808Google Scholar
  19. Jalife, J., Moe, G.K. (1979) A biologic model for parasystole, Am. J. Cardiol. 43, 761–772CrossRefGoogle Scholar
  20. Jalife, J., Michaels, D.C. (1985): Phase-dependent interactions of cardiac pacemakers as mechanisms of control and synchronization in the heart. In: Cardiac Electrophysiology and Arrhythmias, Zipes, D.P., jalife, J. (eds.), Grune and Stratton, Orlando, 109–119Google Scholar
  21. Keener, J.P., Hoppensteadt, F.C., Rinzel, J. (1981): Integrate and fire models of nerve membranes response to oscillatory inputs, SIAM J. Appl. Math. 41, 503517Google Scholar
  22. Levy, M.N., Iano, T., Zieske, H. (1972): Effects of repetitive bursts of vagal activity on heart rate, Circ. res. 30, 186–195CrossRefGoogle Scholar
  23. Perkel, D.H., Schulman, J.H., Bullock, T.H., Moore, G.P., Segundo, J.P. (1964): Pacemaker neurons: Effects of regularly spaced synaptic input, Science 145, 61–63ADSCrossRefGoogle Scholar
  24. Petrillo, G.A., Glass, L., Trippenbach, T. (1983): Phase locking of the respiratory rhythm in cats to a mechanical ventilator. Can. J. Physiol. Pharmacol. 61, 599–607CrossRefGoogle Scholar
  25. Petrillo, G.A., Glass, L. (1984): A theory for phase locking respiration in cats to a mechanical ventilator. Am. J. Physiol. 246, R311–320Google Scholar
  26. Pinsker, H.M. (1977): Aplysia bursting neurons as endogenous oscillators. II: Synchronization and entrainment by pulsed inhibitory synaptic input, J. Neurophysiol. 40, 544–552Google Scholar
  27. Pittendrigh, C.S. (1965): On the mechanism of entrainment of a circadian rhythm by light cycles. In: Circadian Clocks, Aschoff, J. (ed.), North Holland, Amsterdam, 277–297Google Scholar
  28. Reid, J.V.O. (1969): The cardiac pacemaker: Effects of regularly spaced nervous input, Am. Heart J. 78, 58–64zbMATHCrossRefGoogle Scholar
  29. Siegfried, J., Hood, T. (1985): Brain Stimulation Procedures in Dystonic, Hypertonic, Dyskinetic, and Hyperkinetic Conditions. In: Eccles and Dimitrijevic ( 1985 ), 79–90Google Scholar
  30. Van der Tweel, L.H., Meijler, F.L., Van Capelle, F.J.L. (1973): Synchronization of the heart, J. Appl. Physiol. 34, 283–287Google Scholar
  31. Vibert, J.-F., Caille, D., Segundo, J.P. (1981): Respiratory oscillator entrainment by periodic vagal afferents, Biol. Cybern. 41, 119–130CrossRefGoogle Scholar
  32. Volkmann, J., Sturm, V. (1998): Indication and results of stereotactic surgery for advanced Parkinson’s disease, Crit. Rev. Neurosurg. 8, 209–216CrossRefGoogle Scholar
  33. Volkmann, J., Sturm, V., Freund, H.-J. (1998): Die subkortikale Hochfrequenzstim-ulation zur Behandlung von Bewegungsstörungen, Akt. Neurologie 25, 1–9Google Scholar
  34. Winfree, A.T. (1980): The Geometry of Biological Time, Springer, BerlinzbMATHGoogle Scholar
  35. Ypey, D.L., Van Meerwijk, W.P.M., DeHaan, R.L. (1982): Synchronization of cardiac pacemaker cells by electrical coupling. In: Cardiac rate and Rhythm, Bouman, L.N., Jongsma, H.J. (eds.), Martinus Nijhof, The Hague, 363–395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Peter A. Tass
    • 1
  1. 1.Neurologische KlinikHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations