Resetting an Ensemble of Oscillators

  • Peter A. Tass
Part of the Springer Series in Synergetics book series (SSSYN)


This chapter will introduce to the issue of phase resetting of populations of synchronized oscillators. The studies of Winfree (1980) will serve as a starting point for discussing advantages and drawbacks of different types of deterministic models. This will prepare us for the stochastic approach to phase resetting (Tass 1996a, 1996b). Along the lines of this approach a population of biological oscillators will be modeled by an ensemble of phase oscillators. The latter consists of identical oscillators subjected to fluctuations and the stimulus’ impact. No deterministic interactions between the oscillators are taken into account. This rather simple model will allow us to assess the consequences of investigating phase resetting in terms of statistical physics. In particular, in comparison with the deterministic models one encounters qualitatively different phenomena which are important for the understanding of stimulation experiments. The influence of deterministic couplings on the stimulation induced dynamics in a noisy setting will be postponed and analyzed in detail in subsequent chapters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizawa, Y. (1976): Synergetic approach to the phenomena of mode-locking in nonlinear systems, Prog. Theor. Phys. 56, 703–716ADSCrossRefGoogle Scholar
  2. Cohen, A.H., Rossignol, S., Grillner, S. (eds.) (1988): Neural Control of Rhythmic Movements in Vertebrates, John Wiley and Sons, New YorkGoogle Scholar
  3. Elble, R.J., Koller, W.C. (1990): Tremor, The Johns Hopkins University Press, BaltimoreGoogle Scholar
  4. Elphik, C., Tirapegui, E., Brachet, M., Coullet, P. Iooss, G. (1987): A simple global characterization for normal forms of singular vector fields, Physica D 29, 95–127MathSciNetADSCrossRefGoogle Scholar
  5. Gardiner, C.W. (1985): Handbook for Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd ed., Springer, BerlinGoogle Scholar
  6. Gardner, F.M. (1966): Phaselock techniques, John Wiley and Sons, New YorkGoogle Scholar
  7. Glass, L., Mackey, M.C. (1988): From Clocks to Chaos. The Rhythms of Life,Princeton University PressGoogle Scholar
  8. Haken, H. (1977): Synergetics. An Introduction, Springer, Berlin; (1983): Advanced Synergetics, Springer, BerlinGoogle Scholar
  9. Haken, H. (1996) Principles of Brain Functioning, A Synergetic Approach to Brain Activity, Behavior and Cognition, Springer, BerlinCrossRefGoogle Scholar
  10. Haken, H., Kelso, J.A.S., Bunz, H. (1985): A theoretical model of phase transitions in human hand movements, Biol. Cybern. 51, 347–356MathSciNetzbMATHCrossRefGoogle Scholar
  11. Haken, H., Sauermann, H., Schmid, C., Vollmer, H.D. (1967): Theory of laser noise in the phase locking region, Z. Phys. 206, 369–393CrossRefGoogle Scholar
  12. Iooss, G., Adelmeyer, M. (1992): Topics in Bifurcation Theory and Applications, Advanced Series in Nonlinear Dynamics, Vol. 3, World Scientific, SingaporeGoogle Scholar
  13. Kuramoto, Y. (1984): Chemical Oscillations, Waves, and Turbulence, Springer, BerlinzbMATHCrossRefGoogle Scholar
  14. Matthews, P.C., Strogatz, S.H. (1990): Phase diagram for the collective behavior of limit-cycle oscillators, Phys. Rev. Lett. 65, 1701–1704MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. Milnor, J. (1965): Topology From the Differentiable Viewpoint, Univ. of Va. Press, CharlottesvilleGoogle Scholar
  16. Murray, J. D. (1989): Mathematical Biology, Springer, BerlinzbMATHCrossRefGoogle Scholar
  17. Risken, H. (1989): The Fokker-Planck Equation, Methods of Solution and Applications, 2nd ed., Springer, BerlinzbMATHCrossRefGoogle Scholar
  18. Shiino, M., Frankowicz, M. (1989): Synchronization of infinitely many coupled limit-cycle type oscillators, Physics Letters A 136, 103–108MathSciNetADSCrossRefGoogle Scholar
  19. Singer, W., Gray, C.M. (1995): Visual feature integration and the temporal correlation hypothesis, Annu. Rev. Neurosci. 18, 555–586CrossRefGoogle Scholar
  20. Steriade, H., Jones, E.G., Llinâs, R. (1990): Thalamic Oscillations and Signaling, John Wiley and Sons, New YorkGoogle Scholar
  21. Tass, P. (1996a): Resetting biological oscillators–a stochastic approach, J. Biol. Phys. 22, 27–64CrossRefGoogle Scholar
  22. Tass, P. (1996b): Phase resetting associated with changes of burst shape, J. Biol. Phys. 22, 125–155CrossRefGoogle Scholar
  23. Tass, P. (1997): Phase and frequency shifts in a population of phase oscillators, Phys. Rev. E 56, 2043–2060Google Scholar
  24. Tass, P., Haken, H. (1996): Synchronization in networks of limit cycle oscillators, Z. Phys. B 100, 303–320Google Scholar
  25. Winfree, A.T. (1970): An integrated view of the resetting of a circadian clock, J. Theor. Biol. 28, 327–374CrossRefGoogle Scholar
  26. Winfree, A.T. (1980): The Geometry of Biological Time, Springer, BerlinzbMATHGoogle Scholar
  27. Yamaguchi, Y., Shimizu, H. (1984): Theory of self-synchronization in the presence of native frequency distribution and external noises, Physica D 11, 212–226MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Peter A. Tass
    • 1
  1. 1.Neurologische KlinikHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations