Skip to main content

Laser Control of Chemical Dynamics. I. Control of Electronic Transitions by Quadratic Chirping

  • Chapter
Progress in Ultrafast Intense Laser Science II

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 85))

  • 659 Accesses

Summary

An effective scheme for the laser control of wavepacket dynamics applicable to systems with many degrees of freedom is discussed. It is demonstrated that specially designed quadratically chirped pulses can be used to achieve fast and near-complete excitation of the wavepacket without significantly distorting its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura (ZN) theory of nonadiabatic transitions. The scheme is applicable to various processes, such as simple electronic excitations, pump-dumps, and selective bond-breaking, and, taking diatomic and triatomic molecules as examples, it is actually shown to work well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Brumer and M. Shapiro, Chem. Phys. Lett. 126, 541 (1986)

    Article  ADS  Google Scholar 

  2. D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013 (1985)

    Article  ADS  Google Scholar 

  3. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000)

    Google Scholar 

  4. S. M. Hurley and A. W. Castleman, Science 292, 648 (2001)

    Article  Google Scholar 

  5. A. Peirce, M. Dahleh and H. Rabitz, Phys. Rev. A 37, 4950 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Shi, A. Woody and H. Rabitz, J. Chem. Phys. 88, 6870 (1988)

    Article  ADS  Google Scholar 

  7. C. Schwieters and H. Rabitz, Phys. Rev. A 44, 5224 (1991); ibid. 48, 2549 (1993)

    Article  ADS  Google Scholar 

  8. J. Botina, H. Rabitz and N. Rahman, J. Chem. Phys. 102, 226 (1995)

    Article  ADS  Google Scholar 

  9. R. Kosloff, S. Rice, P. Gaspard, S. Tersigni and D. Tannor, Chem. Phys. 139, 201 (1989)

    Article  Google Scholar 

  10. J. Somlói, V. Kazakov and D. Tannor, Chem. Phys. 172, 85 (1993)

    Article  Google Scholar 

  11. M. Sugawara, Y. Fujimura, J. Chem. Phys. 100, 5646 (1994)

    Article  ADS  Google Scholar 

  12. Y. Ohtsuki, H. Kono, Y. Fujimura, J. Chem. Phys. 109, 9318 (1998)

    Article  ADS  Google Scholar 

  13. W. Zhu, J. Botina and H. Rabitz, J. Chem. Phys. 108, 1953 (1998)

    Article  ADS  Google Scholar 

  14. R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)

    Article  ADS  Google Scholar 

  15. S. Chelkowski and G. N. Gibson, Phys. Rev. A. 52, R3417 (1995)

    Google Scholar 

  16. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001)

    Article  ADS  Google Scholar 

  17. B. M. Garraway and K. A. Suominen, Phys. Rev. Lett. 80, 932 (1998)

    Article  ADS  Google Scholar 

  18. C. J. Bardeen, Q. Wang and C. V. Shank, J. Phys. Chem. A. 102, 2759 (1998)

    Article  Google Scholar 

  19. J. Cao, C. J. Bardeen and K. R. Wilson, Phys. Rev. Lett. 80, 1406(1998)

    Article  ADS  Google Scholar 

  20. T. Rickes L. P. Yatsenko, S. Steuerwald, T. Halfmann, B. W. Shore, N. V. Vitanov and K. Bergmann, J. Chem. Phys. 113, 534 (2000)

    Article  ADS  Google Scholar 

  21. B. Y. Chang, I. R. Solá, V. S. Malinovsky, and J. Santamariá, J. Chem. Phys. 113, 4901 (2000)

    Article  ADS  Google Scholar 

  22. B. Y. Chang, I. R. Sola, V. S. Malinovsky and J. Santamaria, Phys. Rev. A. 64, 033420 (2001)

    Article  ADS  Google Scholar 

  23. F. Legare, S. Chelkowski, and A. D. Bandrauk, J. Raman. Spectrosc. 31, 15 (2000)

    ADS  Google Scholar 

  24. Y. Teranishi, K. Nagaya and H. Nakamura, Advances in Multiphoton Processes and Spectroscopy (World Scientific, Singapore, 2001), Vol. 14

    Google Scholar 

  25. Y. Teranishi and H. Nakamura, J. Chem. Phys. 109, 1904 (1997)

    Article  ADS  Google Scholar 

  26. Y. Teranishi and H. Nakamura, Phys. Rev. Lett. 81, 2031 (1998)

    Article  ADS  Google Scholar 

  27. Y. Teranishi and H. Nakamura, J. Chem. Phys. 111, 1415 (1999)

    Article  ADS  Google Scholar 

  28. K. Nagaya, Y. Teranishi and H. Nakamura, in: Laser Control and Manipulation of Molecules, edited by A. D. Bandrauk, R. J. Gordon and Y. Fujimura (American Chemical Society, Washington, DC, 2001)

    Google Scholar 

  29. K. Nagaya, Y. Teranishi and H. Nakamura, J. Chem. Phys. 117, 9588 (2002)

    Article  ADS  Google Scholar 

  30. R. J. Gordon and S. A. Rice, Annu. Rev. Phys. Chem. 48, 601 (1997)

    Article  ADS  Google Scholar 

  31. P. Brumer, M. Shapiro, Coherent Control of Atomic and Molecular Processes (Wiley, New York, 2003)

    Google Scholar 

  32. H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theories, and Applications (World Scientific, Singapore, 2002)

    Book  Google Scholar 

  33. C. Zhu, G. Mil’nikov and H. Nakamura, Semiclassical Theory of Nonadiabatic Transition and Tunneling. In: Modern Trends in Chemical Reactions Dynamics—Part I., edited by K. P. Liu and X. M. Yang (World Scientific, Singapore, 2003)

    Google Scholar 

  34. A. Kondorskiy and H. Nakamura, J. Theor. Comp. Chem. 4, 72 (2005)

    Google Scholar 

  35. A. Kondorskiy, G. Mil’nikov and H. Nakamura, Phys. Rev. A 72, 041401 (2005)

    Article  ADS  Google Scholar 

  36. R. Zare, Science 279, 1875 (1998)

    Article  ADS  Google Scholar 

  37. H. Rabitz, R. D. Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000)

    Article  ADS  Google Scholar 

  38. A. H. Zewail, Angew. Chem. Int. Ed. 39, 2586 (2000) (Nobel Lecture)

    Article  Google Scholar 

  39. S. A. Rice, Nature (London) 409, 422 (2001).

    Article  ADS  Google Scholar 

  40. I. Sh. Averbukh, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, Phys. Rev. Lett. 77, 3518 (1996)

    Article  ADS  Google Scholar 

  41. M. Leibscher and I. Sh. Averbukh, Phys. Rev. A 63, 043407 (2001)

    Article  ADS  Google Scholar 

  42. J. R. R. Verlet, V. G. Stavros, and H. H. Fielding, Phys. Rev. A 65, 032504 (2002)

    Article  ADS  Google Scholar 

  43. K. Nagaya, Y. Teranishi and H. Nakamura, J. Chem. Phys. 113, 6197 (2000)

    Article  ADS  Google Scholar 

  44. H. Fujisaki, Y. Teranishi and H. Nakamura, J. Theor. Comp. Chem. 1, 245 (2002)

    Article  Google Scholar 

  45. S. Zou, A. Kondorskiy, G. Mil’nikov and H. Nakamura, J. Chem. Phys. 122, 084112 (2005)

    Article  ADS  Google Scholar 

  46. B. Amstrup and N. E. Henriksen, J. Chem. Phys. 97, 8285 (1992)

    Article  ADS  Google Scholar 

  47. B. Amstrup and N. E. Henriksen, J. Chem. Phys. 105, 9115 (1996)

    Article  ADS  Google Scholar 

  48. N. Elghobashi, P. Krause, J. Manz, and M. Oppel, Phys. Chem. Chem. Phys. 5, 4806 (2003)

    Article  Google Scholar 

  49. S. I. Chu, Advances in Multiphoton Processes and Spectroscopy, Vol. 2 (World Scientific, Singapore, 1986).

    Google Scholar 

  50. T.J. Smith and J.A. Cina. J. Chem. Phys. 104, 1272 (1996).

    Article  ADS  Google Scholar 

  51. N.E. Henriksen, Chem. Phys. Lett. 312, 196 (1999).

    Article  ADS  Google Scholar 

  52. M.D. Feit and J.A. Fleck, Jr. J. Chem. Phys. 78, 301 (1983).

    Article  ADS  Google Scholar 

  53. C. Leforestier, R.H. Besseling, C. Cerjan et al., J. Comput. Phys. 94, 59 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. Á. Vibók and G.G. Balint-Kurti, J. Chem. Phys. 96, 7615 (1992).

    Article  ADS  Google Scholar 

  55. H. Partridge and S.R. Langhoff, J. Chem. Phys. 74, 2361 (1981).

    Article  ADS  Google Scholar 

  56. S. Magnier, M. Aubert-Frecon and Ph. Millie, J. Molec. Spec. 200, 86 (2000).

    ADS  Google Scholar 

  57. S. Meyer and V. Engel, J. Phys. Chem. A 101, 7749 (1997).

    Article  Google Scholar 

  58. D.G. Imre and J. Zhang, Chem. Phys. 139, 89 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zou, S., Kondorskiy, A., Mil’nikov, G., Nakamura, H. (2007). Laser Control of Chemical Dynamics. I. Control of Electronic Transitions by Quadratic Chirping. In: Progress in Ultrafast Intense Laser Science II. Springer Series in Chemical Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38156-3_5

Download citation

Publish with us

Policies and ethics