Skip to main content

Some Properties of Femtosecond Laser Filamentation Relevant to Atmospheric Applications Part I. The Robustness of Filamentation

  • Chapter
Book cover Progress in Ultrafast Intense Laser Science II

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 85))

  • 686 Accesses

Summary

When ultrashort (fs), high-power laser pulses propagate through the atmosphere, extended plasma filaments form and emit white light in a spectral range spanning from the ultraviolet (230 nm) to the infrared (4.5 µm). This strongly non-linear optical phenomenon results from a dynamical balance between respectively focusing and defocusing Kerr- and plasma-lenses, which are formed by a nonuniform, intensity-dependent refractive index across the laser beam profile. This non-linear propagation regime opens the way to various applications in atmospheric sciences, such as white-light Lidar relying on the white light continuum, which can be observed up to high altitudes and allows multicomponent remote sensing. Other applications rely on the ability of the filaments to deliver high-intensities and induce non-linear optical effects at remote locations, e.g. bioaerosols remote sensing or solid target analysis. Furthermore, the ionization of the fs-laser-induced filaments permits to control high-voltage discharges, opening the way to laser lightning rods.

This chapter shall review the basic properties of filamentation, with a particular emphasis on one spectacular feature: Their ability to propagate unperturbed across clouds and fogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, Remote sensing of the atmosphere using ultrashort laser pulses, Applied Physics B 71, 573–580 (2000)

    Article  Google Scholar 

  2. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, L. Wöste, White-light filaments for atmospheric analysis, Science 301, 61 (2003)

    Article  ADS  Google Scholar 

  3. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, Remote Detection and Identification of Biological Aerosols using a Femtosecond Terawatt Lidar System, Applied Physics B 78, 535 (2004)

    Article  Google Scholar 

  4. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, L. Wöste, Long-distance remote laser-induced breakdown spectroscopy using filamentation in air, Applied Physics Letters 85, 3977 (2004)

    Article  ADS  Google Scholar 

  5. H. Pépin, D. Comtois, F. Vidal, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, B. L. Fontaine, F. Martin, F. A. M. Rizk, C. Potvin, P. Couture, H. P. Mercure, A. Bondiou-Clergerie, P. Lalande, I. Gallimberti, Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses, Physics of Plasmas 8, 2532 (2001)

    Article  ADS  Google Scholar 

  6. D. Comtois, C. Y. Chien, A. Desparois, F. Gérin, G. Jarry, T. W. Johnston, J. C. Kieffer, B. L. Fontaine, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, P. Couture, H. P. Mercure, C. Potvin, A. Bondiou-Clergerie, I. Gallimberti, Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser, Applied Physics Letters 76, 819 (2000).

    Article  ADS  Google Scholar 

  7. D. Comtois, H. Pépin, F. Vidal, F. A. M. Risk, C.-Y. Chien, T. W. Johnston, J.-C. Kieffer, B. La Fontaine, F. Martin, C. Potvin, P. Couture, H. P. Mercure, A. Bondiou-Clergerie, P. Lalande, I. Gallimberti, Triggering and guiding of an upward positive leader from ground rod with an ultrashort laser pulse-I: Experimental results, IEEE transactions on plasma science 31, 377 (2003)

    Article  ADS  Google Scholar 

  8. D. Comtois, H. Pépin, F. Vidal, F. A. M. Risk, C.-Y. Chien, T. W. Johnston, J.-C. Kieffer, B. La Fontaine, F. Martin, C. Potvin, P. Couture, H. P. Mercure, A. Bondiou-Clergerie, P. Lalande, I. Gallimberti, Triggering and guiding of an upward positive leader from ground rod with an ultrashort laser pulse-II: Modeling, IEEE transactions on plasma science 31, 387 (2003)

    Article  ADS  Google Scholar 

  9. B. La Fontaine, D. Comtois, C. Y. Chien, A. Desparois, F. Gérin, G. Jarry, T. W. Johnston, J. C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, H. P. Mercure, Guiding large-scale spark discharges with ultrashort pulse laser filaments, Journal of Applied Physics 88, 610 (2000).

    Article  ADS  Google Scholar 

  10. M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, Megavolt discharges triggered and guided with laser filaments, Optics Letters 27, 772 (2002)

    Article  ADS  Google Scholar 

  11. R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, J. P. Wolf, L. Wöste, Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions, Applied Physics Letters 85, 5781 (2004)

    Article  ADS  Google Scholar 

  12. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air, Optics Letters 20, 73–75 (1995)

    Article  ADS  Google Scholar 

  13. L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, Femtosecond atmospheric lamp, Laser und Optoelektronik 29, 51 (1997)

    Google Scholar 

  14. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woeste, Teramobile: a mobile femtosecond-terawatt laser and detection system, European Physical J. Applied Physics 20, 183 (2002)

    Article  ADS  Google Scholar 

  15. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, A. Mysyrowicz, Conical emission from self-guided femtosecond pulses in air, Optics Letters 21, 62 (1996).

    Article  ADS  Google Scholar 

  16. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, V. P. Kandidov, Moving focus in the propagation of ultrashort laser pulses in air, Optics Letters 22, 304 (1997)

    Article  ADS  Google Scholar 

  17. M. Mlejnek, E. M. Wright, J. V. Moloney, Dynamic spatial replenishment of femtosecond pulses propagating in air Optics Letters 23, 382 (1998)

    Article  ADS  Google Scholar 

  18. D. Strickland, P. B. Corkum, Resistance of short pulses to self-focusing, Journal of the Optical Society of America B 11, 492 (1994)

    Article  ADS  Google Scholar 

  19. L. Roso-Franco, Self-Reflected Wave inside a Very Dense Saturable Absorber, Physical Review Letters 55, 2149 (1995)

    Article  ADS  Google Scholar 

  20. R. R. Alfano, S. L. Shapiro, Emission in the region 4000 to 7000 Å via fourphoton coupling in glass, Physical Review Letters 24, 584 (1970)

    Article  ADS  Google Scholar 

  21. R. R. Alfano, S. L. Shapiro, Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses, Physical Review Letters 24, 592 (1970)

    Article  ADS  Google Scholar 

  22. R. R. Alfano, S. L. Shapiro, Direct distortion of electric clouds of rare-gas atoms in intense electric fields, Physical Review Letters 24, 1217 (1970)

    Article  ADS  Google Scholar 

  23. A. Brodeur, S. L. Chin, Ultrafast white-light continuum generation and self-focusing in transparent condensed media, Journal of the Optical Society of America B 16, 637 (1999)

    Article  ADS  Google Scholar 

  24. Y. R. Shen, The principles of nonlinear optics, John Wiley & Sons, New York (1984)

    Google Scholar 

  25. G. Yang, Y. Shen, Spectral broadening of ultrashort pulses in a nonlinear medium, Optics Letters 9, 510 (1984)

    Article  ADS  Google Scholar 

  26. A. Gaeta, Catastrophic collapse of ultrashort pulses, Physical Review Letters 84, 3582 (2000)

    Article  ADS  Google Scholar 

  27. J. K. Ranka, R. W. Schirmer, A. L. Gaeta, Observation of pulse splitting in nonlinear dispersive media, Physical Review Letters 77, 3783 (1996)

    Article  ADS  Google Scholar 

  28. A. Proulx, A. Talebpour, S. Petit, S. L. Chin, Fast pulsed electric field created from the self-generated filament of a femtosecond Ti:Sapphire laser pulse in air, Optics Communications 174, 305 (2000)

    Article  ADS  Google Scholar 

  29. S. Tzortzakis, M. A. Franco, Y.-B. André, A. Chiron, B. Lamouroux, B. S. Prade, A. Mysyrowicz, Formation of a conducting channel in air by self-guided femtosecond laser pulses, Physical Review E 60, R3505–R3507 (1999)

    Article  ADS  Google Scholar 

  30. S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, Time evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air, Optics Commun. 181, 123 (2000)

    Article  ADS  Google Scholar 

  31. H. Schillinger, R. Sauerbrey, Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses, Applied Physics B 68, 753 (1999)

    Article  Google Scholar 

  32. J. Schwarz, P. Rambo, J. C. Diels, Measurements of multiphoton ionization coefficients with ultrashort ultraviolet pulses, Applied Physics B 72, 343–347 (2001)

    Google Scholar 

  33. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses, Optics Communications 56, 219 (1985)

    Article  ADS  Google Scholar 

  34. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, Tabletop terawatt laser by chirped pulse amplification, IEEE Journal of Quantum Electronics 24, 398 (1988)

    Article  ADS  Google Scholar 

  35. P. L. Kelley, Self-focusing of optical beams, Physical Review Letters 15, 1005 (1965); P. L. Kelley, Erratum: Self-focusing of optical beams, Physical Review Letters 16, 384 (1965)

    Article  ADS  Google Scholar 

  36. G. A. Ashkaryan, The self-focusing effect, Sov. Phys. J. 16, 680 (1974)

    Article  ADS  Google Scholar 

  37. X. M. Zhao, P. Rambo, J.-C. Diels, Effect of oxygen on the laser triggering of lightning, QELS’95 16, 178 (1995)

    Google Scholar 

  38. J. H. Marburger, E. L. Dawes, Dynamical formation of a small-scale filament, Physical Review Letters 21, 556 (1968). Note that the radius considered in the classical writing of the Marburger formula is the half width at e −1/2, not at 1/e or 1/e2 as usual.

    Article  ADS  Google Scholar 

  39. S. L. Chin, From Multiphoton to Tunnel Ionization, in Advances in Multiphoton Processes and Spectroscopy, eds. S. H. Lin, A. A. Villaeys and Y. Fujimura, World Scientific, Singapore, 16, 249–272 (2004)

    Google Scholar 

  40. A. Talebpour, J. Yang, S.L. Chin, Semi-empirical model for the rate of tunnel ionization of N 2 and O 2 molecules in an intense Ti:Sapphire laser pulse, Optics Communications 163, 29 (1999)

    Article  ADS  Google Scholar 

  41. J. Kasparian, R. Sauerbrey, S. L. Chin, The critical laser intensity of self-guided light filaments in air, Applied Physics B 71, 877 (2000)

    Google Scholar 

  42. L. Bergé, A. Couairon, Gas-induced solitons, Physical Review Letters 86, 1003 (2001)

    Article  ADS  Google Scholar 

  43. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, S. L. Chin, Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas, Applied Physics B 73, 287 (2001).

    Google Scholar 

  44. B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, H. P. Mercure, Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air, Physics of Plasmas 6, 1615 (1999).

    Article  ADS  Google Scholar 

  45. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, J.-P. Wolf, Kilometer-range non-linear propagation of femtosecond laser pulses, Physical Review E 69, 036607 (2004)

    Article  ADS  Google Scholar 

  46. G. Méchain, A. Couairon, Y.-B. André, C. D’amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, R. Sauerbrey, Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization, Applied Physics B 79, 379 (2004)

    Article  Google Scholar 

  47. W. G. Wagner, H. A. Haus, J. H. Marburger, Large-scale self-trapping of optical beams in the paraxial ray approximation, Physical Review 175, 256 (1968); W. G.Wagner, H. A. Haus, J. H. Marburger, Erratum: Large-scale self-trapping of optical beams in the paraxial ray approximation, Physical Review A 3, 2150 (1971)

    Article  ADS  Google Scholar 

  48. P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, IEEE Journal of Quantum electronics 28, 2416 (1992)

    Article  ADS  Google Scholar 

  49. J. K. Ranka, A. L. Gaeta, Breakdown of the slowly varying enveloppe approximation in the self-focusing of ultrashort pulses, Optics Letters 23, 534 (1998).

    Article  ADS  Google Scholar 

  50. A. Chiron, B. Lamouroux, R. Lange, J.-F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysyrowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, The European Physical Journal D 6, 383 (1999)

    Article  ADS  Google Scholar 

  51. N. Aközbek, C. M. Bowden, A. Talepbour, S. L. Chin, Femtosecond pulse propagation in air: variational analysis, Physical Review E 61, 4540 (2000)

    Article  ADS  Google Scholar 

  52. D. L. Hovhannisyan, Analytic solution of the wave equation describing dispersion-free propagation of a femtosecond laser pulse in a medium with cubic and fifth-order nonlinearity, Optics Commun. 196, 103 (2001)

    Article  ADS  Google Scholar 

  53. P. Sprangle, J. R. Peñano and B. Hafizi, Propagation of intense short laser pulses in the atmosphere, Physical Review E 66, 046418 (2002).

    Article  ADS  Google Scholar 

  54. M. Mlejnek, M. Kolesik, J. V. Moloney, E. M. Wright, Optically turbulent femtosecond light guide in air, Physical Review Letters 83, 2938 (1999)

    Article  ADS  Google Scholar 

  55. C. Ren, R. G. Hemker, R. A. Fonseca, B. J. Duda, W. B. Mori, Mutual attraction of laser beams in plasmas: braided light, Physical Review Letters 85, 2124 (2000).

    Article  ADS  Google Scholar 

  56. G. Fibich, B. Ilan, Deterministic vectorial effect lead to multiple filamentation, Optics Letters 26, 840 (2001)

    Article  ADS  Google Scholar 

  57. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, R. Sauerbrey, Multiple filamentation of TW laser pulses in air, Physical Review Letters 92, 225002 (2004)

    Article  ADS  Google Scholar 

  58. S. A. Hosseini, Q. Luo, B. Ferland, W. Liu, S. L. Chin, O. G. Kosareva, N. A. Panov, N. Aközbek, V. P. Kandidov, Competition of multiple filaments during the propagation of intense femtosecond laser pulses, Physical Review A 70, 033802 (2004)

    Article  ADS  Google Scholar 

  59. V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, S. L. Chin, Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse, Applied Physics B 80, 267–275 (2005)

    Article  Google Scholar 

  60. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  61. S. L. Chin, S. Petit, F. Borne, K. Miyazaki, The white light supercontinuum is indeed an ultrafast white light laser, Japanese Journal of Applied Physics 38, L126 (1999)

    Article  ADS  Google Scholar 

  62. O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chen, S. L. Chin, Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air, Optics Letters 22, 1332 (1997).

    Article  ADS  Google Scholar 

  63. J. Zhang, H. Yang, J. Zhang, X. Lu, Y. Li, Y. Li, H. Teng, Z. Chen, Z. Wei, Z. Sheng, 286th Heraeus Seminar on Optical methods in atmospheric analysis, Bad Honnef, Germany, 14–18 October 2002.

    Google Scholar 

  64. J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J.-P. Wolf, J. Kasparian, R. Sauerbrey, Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air, Optics Letters 26, 533–535 (2001)

    Article  ADS  Google Scholar 

  65. R. Bourayou, G. Méjean, J. Kasparian, M. Rodriguez, E. Salmon, J. Yu, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, A. P. Hatzes, R. Sauerbrey, L. Wöste, J.-P. Wolf, White-light filaments for multiparameter analysis of cloud microphysics, Journal of the Optical Society of America 22, 369 (2005)

    Article  ADS  Google Scholar 

  66. L. Iorio, Classical and Quantum Gravity 19, 175 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  67. W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, S. L. Chin, Intensity clamping of a femtosecond laser pulse in condensed matter, Optics Communications 202, 189–197 (2002)

    Article  ADS  Google Scholar 

  68. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, J. P. Wolf, Light filaments transmitted through clouds, Applied Physics Letters 83, 213 (2003)

    Article  ADS  Google Scholar 

  69. S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, R. Sauerbrey, Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters, Physical Review E 70, 046602 (2004)

    Article  ADS  Google Scholar 

  70. M. Mlejnek, E. M. Wright, J. V. Moloney, Optics Express 4, 223–228 (1999).

    Article  ADS  Google Scholar 

  71. M. Kolesik, J. V. Moloney, Self-healing femtosecond light filaments, Optics Letters 29, 590 (2004)

    Article  ADS  Google Scholar 

  72. S. Skupin, L. Bergé, U. Peschel, F. Luderer, Interaction of femtosecond light filaments with obscurants in aerosols, Physical Review Letters 93, 023901 (2004)

    Article  ADS  Google Scholar 

  73. S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, V. P. Kandidov, Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser), Journal of Nonlinear Optical Physics and Materials 8, 121 (1999)

    Article  ADS  Google Scholar 

  74. W. Liu, J.F. Gravel, F. Théberge, A. Becker, S.L. Chin, Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air, Applied Physics B 80, 857 (2005)

    Article  Google Scholar 

  75. G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J.-P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, L. Bergé, Multifilamentation transmission through fog, Physical Review E 72, 026611 (2005)

    Article  ADS  Google Scholar 

  76. Classification of the World Climate Research Program (WCRP). See e.g.: http://isccp.giss.nasa.gov/cloudtypes.html

    Google Scholar 

  77. J. Kasparian, Chapter 15 in this volume

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasparian, J. (2007). Some Properties of Femtosecond Laser Filamentation Relevant to Atmospheric Applications Part I. The Robustness of Filamentation. In: Progress in Ultrafast Intense Laser Science II. Springer Series in Chemical Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38156-3_14

Download citation

Publish with us

Policies and ethics