Skip to main content

Collimated and Ultrafast X-Ray Beams from Laser-Plasma Interactions

  • Chapter

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 85))

Summary

We show that different schemes can be now followed to produce collimated X-ray radiation using laser systems. By focusing intense femtosecond laser light onto a gas jet, electrons of the plasma can be manipulated to generate ultrafast (femtosecond) X-ray radiation in the forward direction along the laser axis. In this chapter we discuss nonlinear Thomson scattering, betatron emission and Compton scattering. In years to come, the rapid development of laser technology will provide more intense laser systems. We can expect to see the creation of bright X-ray beams with a high degree of collimation (< 1 mrad divergence), as well as even shorter pulse durations, down to attosecond time scales. Such sources will provide multidisciplinary scientific communities with unique tools to probe and excite matter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Materlik, Th. Tschentscher (eds), The X-Ray Free Electron Laser (TESLA Technical Design Report). DESY, Hamburg/Zeuthen (see http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html, last accessed 03 September 2006)

    Google Scholar 

  2. LCLS, Linac coherent light source website. LCLS, Menlo Park, CA (see http://www-ssrl.slac.stanford.edu/lcls/, last accessed 03 September 2006)

    Google Scholar 

  3. N. Bloembergen, Rev. Mod. Phys. 71, S283 (1999)

    Article  Google Scholar 

  4. A. Rousse et al., Rev. Mod. Phys. 73(1), 17 (2001); Ch. Bressler et al., Chem. Rev. 104, 1781 (2004)

    Article  ADS  Google Scholar 

  5. ESG for ALS at Berkeley Lab, Workshop on new opportunities in ultrafast science using X-rays, Napa, CA, USA, 2002 (see http://www-esg.lbl.gov/Conferences%20&%20Meetings/ultrafast/index.html, last accessed 03 September 2006)

    Google Scholar 

  6. Hamburger Synchrotronstrahlungslabor, Winter School on ultrafast X-rays, Hamburg, Germany, 2002 (see http://www-hasylab.desy.de/conferences/Xray-Course/, last accessed 03 September 2006)

    Google Scholar 

  7. Paul Scherrer Institut, Workshop on ultrafast science with electrons and X-rays, Montreux, Switzerland, 2003 (see http://sls.web.psi.ch/view.php/science/events/uscience03, last accessed 03 September 2006)

    Google Scholar 

  8. Laboratoire d’Optique Appliquée, ENSTA, Summer school on ultrafast X-ray science with lasers and accelerator sources, Cargèse, France, 2003 (see http://loa.ensta.fr/ufx/, last accessed 03 September 2006)

    Google Scholar 

  9. Berkeley Lab, Workshop on ultrafast X-rays, San Diego, CA, USA, 2004 (see http://ultrafast2004.lbl.gov/, last accessed 03 September 2006)

    Google Scholar 

  10. C. Rischel et al., Nature 390, 490 (1997)

    Article  ADS  Google Scholar 

  11. C. Siders et al., Science 286, 1340 (1999)

    Article  Google Scholar 

  12. C. Rose-Petruck et al., Nature 398, 310 (1999)

    Article  ADS  Google Scholar 

  13. A. Rousse et al., Nature 410, 65 (2001)

    Article  ADS  Google Scholar 

  14. K. Sokolowski-Tinten et al., Phys. Rev. Lett. 87, 225701 (2001)

    Article  ADS  Google Scholar 

  15. A. Cavalleri et al., Phys. Rev. Lett. 87, 237401 (2001)

    Article  ADS  Google Scholar 

  16. Th. Feurer et al., Phys. Rev. E 65, 016412 (2002)

    Article  ADS  Google Scholar 

  17. K. Sokolowski-Tinten et al., Nature 422, 287 (2003)

    Article  ADS  Google Scholar 

  18. A. Lindenberg et al., Science 308, 392 (2005)

    Article  ADS  Google Scholar 

  19. A. Rousse et al., Phys. Rev. E 50(3), 2200 (1994)

    Article  ADS  Google Scholar 

  20. Ch. Reich et al., Phys. Rev. E 68, 056408 (2003)

    Article  ADS  Google Scholar 

  21. E. Esarey, S. K. Ride, and P. Sprangle, Phys. Rev. E 48, 3003 (1993)

    Article  ADS  Google Scholar 

  22. S.K. Ride et al., Phys. Rev. E 52, 5425 (1995)

    Article  ADS  Google Scholar 

  23. E.S. Sarachik and G.T. Shappert, Phys. Rev. D 1, 2738 (1970)

    Article  ADS  Google Scholar 

  24. B. Shen et al., Opt. Commun. 136, 239 (1997)

    Article  Google Scholar 

  25. Y. Ueshima et al., Laser Part. Beams 17, 45 (1999)

    Article  ADS  Google Scholar 

  26. K.J. Kim et al., Nucl. Instrum. Methods Phys. Res. A 341, 351 (1994)

    Article  ADS  Google Scholar 

  27. W.P. Leemans et al., IEEE J. Quantum Electron. 33, 1925 (1997)

    Article  ADS  Google Scholar 

  28. S.Y. Chen et al., Nature 396, 653 (1998)

    Article  ADS  Google Scholar 

  29. K. Lee et al., Phys. Rev. E 67, 026502 (2003)

    Article  ADS  Google Scholar 

  30. S. Banerjee et al., Phys. Plasmas 9, 2393 (2002)

    Article  ADS  Google Scholar 

  31. K. Ta Phuoc et al, Phys. Rev. Lett. 91(19), 195001-1 (2003)

    Google Scholar 

  32. M. Hentschel et al., Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  33. J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998)

    Google Scholar 

  34. M. Pittman et al., Appl. Phys. B: Las. Opt. 74, 529 (2002)

    Article  ADS  Google Scholar 

  35. P. Tomassini et al., Phys. Plasmas 10, 917 (2003)

    Article  ADS  Google Scholar 

  36. Th. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  37. A. Tarasevitch et al., Phys. Rev. A 62, 023816 (2000)

    Article  ADS  Google Scholar 

  38. H. Daido, Rep. Prog. Phys. 65, 1513 (2002)

    Article  ADS  Google Scholar 

  39. D. Umstadter, J. Phys. D 36, R151 (2003)

    Google Scholar 

  40. V. Malka et al., Science 298, 1596 (2002)

    Article  ADS  Google Scholar 

  41. A. Pukhov and J. Meyer ter Vehn, Appl. Phys. B 74, 355 (2002)

    Article  ADS  Google Scholar 

  42. I. Kostyukov, A. Pukhov, and S. Kiselev, Phys. Plasmas 10, 4818 (2003)

    Article  ADS  Google Scholar 

  43. E. Esarey et al., Phys. Rev. E 65, 056505 (2002)

    Article  ADS  Google Scholar 

  44. D. H. Whittum, Phys. Fluids B 4, 730 (1992)

    Article  ADS  Google Scholar 

  45. S. Wang et al., Phys. Rev. Lett. 88, 135004-1 (2002)

    Google Scholar 

  46. C. Joshi et al., Phys. Plasmas 9, 1845 (2002)

    Article  ADS  Google Scholar 

  47. A. Rousse et al., Phys. Rev. Lett. (13) 93, 135005-1 (2004)

    Google Scholar 

  48. K. Ta Phuoc et al., Phys. Plasmas 12, 023101 (2005)

    Article  ADS  Google Scholar 

  49. P. Catravas, E. Esarey, and W.P. Leemans, Meas. Sci. Technol. 12, 1828 (2001)

    Article  ADS  Google Scholar 

  50. S.C. Anderson et al., Appl. Phys. B 78, 891 (2004)

    Article  ADS  Google Scholar 

  51. A. Ting et al., Nucl. Instr. Methods Phys. Res. A 375 ABS68 (1996)

    Google Scholar 

  52. I.V. Pogorelsky et al., Phys. Rev. ST Accel. Beams 3, 090702 (2000)

    Article  ADS  Google Scholar 

  53. W.P. Leemans et al., Phys. Rev. Lett. 77(20), 4182 (1996)

    Article  ADS  Google Scholar 

  54. K. Chouffani et al., Nucl. Instr. Methods Phys. Res. A 495, 95 (2002)

    Article  ADS  Google Scholar 

  55. Y. Li et al., Phys. Rev. ST AB 5, 0444701 (2002)

    ADS  Google Scholar 

  56. J. Faure et al., Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rousse, A., Phuoc, K.T., Albert, F. (2007). Collimated and Ultrafast X-Ray Beams from Laser-Plasma Interactions. In: Progress in Ultrafast Intense Laser Science II. Springer Series in Chemical Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38156-3_11

Download citation

Publish with us

Policies and ethics