Skip to main content

Effects of Electrical and Electromagnetic Fields on Plants and Related Topics

  • Chapter
Plant Electrophysiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WR (1990) Electromagnetic fields, cell membrane amplification, and cancer promotion. In: Wilson BW, Stevens RG, Anderson LE (eds) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio, pp 211–249.

    Google Scholar 

  • Alberts B, Bray D, Lewis J et al. (2002) Molecular biology of the cell. Garland Science, New York.

    Google Scholar 

  • Barbier E, Veyret B, Dufy B (1996) Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics 17:303–311.

    Article  CAS  PubMed  Google Scholar 

  • Baureus Koch CLM, Sommarin M, Persson BRR, Salford LG, Eberhardt JL (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402.

    Article  CAS  PubMed  Google Scholar 

  • Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci USA 73:1999–2003.

    Article  CAS  PubMed  Google Scholar 

  • Bawin SM, Kaczmarek KL, Adey WR (1975) Effects of modulated VHF fields on the central nervous system. Ann N Y Acad Sci 247:74–81.

    Article  CAS  PubMed  Google Scholar 

  • Blackman CF (1990) ELF effects on calcium homeostasis. In: Wilson BW, Stevens RG, Anderson LE (eds) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio, pp 189–208.

    Google Scholar 

  • Blackman CF, Benane SG, Kinney LS, House DE, Joines WT (1982) Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat Res 92:510–520.

    Article  CAS  PubMed  Google Scholar 

  • Blackman VH (1924) Field experiments in electroculture. J Agricult Sci 14:240–267.

    Article  CAS  Google Scholar 

  • Blackman VH, Legg AT (1924) Pot culture experiments with an electric discharge. J Agricult Sci 14:268–273.

    Article  CAS  Google Scholar 

  • Blackman VH, Legg AT, Gregory FG (1923) The effect of direct current of very low intensity on the rate of growth of the coleoptile of barley. Proc R Soc Lond B 95:214–228.

    Article  Google Scholar 

  • Briggs LJ, Campbell AB, Heald RH, Flint LH (1926) Electroculture. US Dept Agriculture, Bulletin 1379.

    Google Scholar 

  • Dijak M, Smith DL, Wilson TJ, Brown DCW (1986) Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa. Plant Cell Rep 5:468–470.

    Article  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hanann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 246:147–153.

    Article  Google Scholar 

  • Goldsworthy A (1996) Electrostimulation of cells by weak electric currents. In: Lynch PT, Davey NR (eds) Electrical manipulation of cells. Chapman and Hall, New York, pp 249–272.

    Google Scholar 

  • Goldsworthy A, Mina MG (1991) Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2, 4-dichlorophenoxyacetic acid. Planta 183:368–373.

    Article  CAS  Google Scholar 

  • Goodman R, Blank M, Lin H, Dai R, Khorkova O, Soo L, Weisbrot D, Henderson A (1994) Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem Bioenerg 33:115–120.

    Article  CAS  Google Scholar 

  • Ha B-Y (2001) Stabilization and destabilization of cell membranes by multivalent ions. Phys Rev E 64:051902 (5 pages).

    Google Scholar 

  • Halle B (1988) On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bioelectromagnetics 9:381–385.

    Article  CAS  PubMed  Google Scholar 

  • Ihrig I, Heese C, Glaser R (1997) Alterations in intracellular calcium concentration in mice neuroblastoma cells by electrical field and UVA. Bioelectromagnetics 18:595–597.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6:445–476.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LF, Robinson KR, Nuccitelli R (1974) Local cation entry and self-electrophoresis as an intracellular localisation mechanism. Ann N Y Acad Sci 238:372–389.

    Article  CAS  PubMed  Google Scholar 

  • Lemström K (1904) Electricity in agriculture and horticulture. Electrician Publications, London.

    Google Scholar 

  • Lew VL, Hockaday A, Freeman CJ, Bookchin RM (1988) Mechanism of spontaneous inside-out vesiculation of red cell membranes. J Cell Biol 106:1893–1901.

    Article  CAS  PubMed  Google Scholar 

  • Liburdy RP, Callahan DE, Harland J, Dunham E, Sloma TR, Yaswen P (1993) Experimental evidence for 60 Hz magnetic fields operation through the signal transduction cascade. FEBS 334:301–308.

    Article  CAS  Google Scholar 

  • Liboff AR (1985) Geomagnetic cyclotron resonance in living cells. J Biol Phys 13:39–51.

    Article  Google Scholar 

  • Liboff AR, McLeod BR, Smith SD (1990) Ion cyclotron resonance effects of ELF fields in biological systems. In: Wilson BW, Stevens RG, Anderson LE (eds) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio, pp 251–289.

    Google Scholar 

  • Lund EJ (1923) Electrical control of organic polarity in the egg of Fucus. Bot Gaz 76:288–301.

    Article  Google Scholar 

  • Magone I (1996) The effect of electromagnetic radiation from the Skrunda Radio Location Station on Spirodela polyrhiza (L) Schleiden cultures. Sci Total Environ 180:75–80.

    Article  CAS  Google Scholar 

  • McLeod BR, Smith SD, Liboff AR (1987) Potassium and calcium cyclotron resonance curves and harmonics in diatoms (A. coffeaeformis). J Bioelectr 6:153–168.

    CAS  Google Scholar 

  • Mehedintu M, Berg H (1997) Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochem Bioenerg 43:67–70.

    Article  CAS  Google Scholar 

  • Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YA, Chernomordik LV (2001) Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys J 80:1829–1836.

    Article  CAS  PubMed  Google Scholar 

  • Mina MG, Goldsworthy A (1991) Changes in the electrical polarity of tobacco cells following the application of weak external currents. Planta 186:104–108.

    Article  Google Scholar 

  • Mina MG, Goldsworthy A (1992) Electrical polarization of tobacco cells by Ca2+ ion channels. J Exp Bot 43:449–454.

    Article  CAS  Google Scholar 

  • Muday GK, Peer WA, Murphy AS (2003) Vesicular cycling mechanisms that control auxin transport polarity. Trends Plant Sci 8:301–304.

    Article  CAS  PubMed  Google Scholar 

  • Mulkey TI, Kuzmanoff KM, Evans MI (1981) Correlations between proton efflux and growth patterns during geotropism and phototropism in maize and sunflower. Planta 152:239–241.

    Article  CAS  Google Scholar 

  • Muraji M, Asai T, Wataru T (1998) Primary root growth rate of Zea mays seedlings grown in an alternating magnetic field of different frequencies. Bioelectrochem Bioenerg 44:271–273.

    Article  CAS  Google Scholar 

  • Murr LE (1963) Plant growth responses in a stimulated electric field environment. Nature 200:490–491.

    Article  Google Scholar 

  • Mycielska ME, Djamgoz MBA (2004) Cellular mechanisms of direct-current electric fields effects: galvanotaxis and metastatic disease. J Cell Sci 117:1631–1639.

    Article  CAS  PubMed  Google Scholar 

  • Novák B, Bentrup FW (1973) Orientation of Fucus egg polarity by electric ac and dc fields. Biophysik 9:253–260.

    Article  PubMed  Google Scholar 

  • Obo M, Konishi S, Otaka Y, Kitamura S (2002) Effect of magnetic field exposure on calcium channel currents using patch clamp technique. Bioelectromagnetics 23:306–314.

    Article  CAS  PubMed  Google Scholar 

  • Peng HB, Jaffe LF (1976) Polarization of fucoid eggs by steady electrical fields. Dev Biol 53:277–284.

    Article  CAS  PubMed  Google Scholar 

  • Rathore KS, Goldsworthy A (1985) Electrical control of shoot regeneration in plant tissue cultures. Bio/Technol 3:1107–1109.

    Article  Google Scholar 

  • Rathore KS, Hodges TK, Robinson KR (1988) A refined technique to apply electrical currents to callus cultures. Plant Physiol 88:515–517.

    Article  PubMed  Google Scholar 

  • Schonland BFJ (1928) The interchange of electricity between thunderclouds and the earth. Proc R Soc Lond A 118:242–262.

    Google Scholar 

  • Selaga T, Selaga M (1996) Response of Pinus sylvestris L needles to electromagnetic fields. Cytological and ultrastructural aspects. Sci Total Environ 180:65–73.

    Article  Google Scholar 

  • Smith SD. McLeod BR, Liboff AR (1993) Effects of SR tuning 60 Hz magnetic fields on sprouting and early growth of Raphanus sativus. Bioelectrochem Bioenerg 32:67–76.

    Article  Google Scholar 

  • Steck TL, Weinstein RS, Straus, JH, Wallach DFH (1970) Inside-out red cell membrane vesicles: preparation and purification. Science 168:255–257.

    Article  CAS  PubMed  Google Scholar 

  • Stenz H-G, Wohlwend B, Weisenseel MH (1998) Weak AC electric fields promote root growth and ER abundance of root cap cells. Bioelectrochem Bioenerg 44:261–269.

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiology. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Tenforde TS (1990) Biological interactions and human health effects of extremely low frequency magnetic fields. In: Wilson BW, Stevens RG, Anderson LE (eds) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio, pp 291–315.

    Google Scholar 

  • Wilson BW, Stevens RG, Anderson LE (eds) (1990) Extremely low frequency electromagnetic fields: the question of cancer. Battelle Press, Columbus, Ohio.

    Google Scholar 

  • Zhadin MN, Novikov VV, Barnes FS, Pergola NF (1998) Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19:41–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldsworthy, A. (2006). Effects of Electrical and Electromagnetic Fields on Plants and Related Topics. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_11

Download citation

Publish with us

Policies and ethics