Skip to main content

The Genomic Signature of Breast Cancer Prevention

  • Conference paper
Cancer Prevention

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 174))

Abstract

Early pregnancy imprints in the breast permanent genomic changes or a signature that reduces the susceptibility of this organ to cancer. The breast attains its maximum development during pregnancy and lactation. After menopause, the breast regresses in both nulliparous and parous women containing lobular structures designated Lob.1. The Lob 1 found in the breast of nulliparous women and of parous women with breast cancer never went through the process of differentiation, retaining a high concentration of epithelial cells that are targets for carcinogens and therefore susceptible to undergoing neoplastic transformation, these cell are called Stem cells 1, whereas Lob 1 structures found in the breast of early parous postmenopausal women free of mammary pathology, on the other hand, are composed of an epithelial cell population that is refractory to transformation called Stem cells 2. The degree of differentiation acquired through early pregnancy has changed the genomic signature that differentiates the Lob 1 from the early parous women from that of the nulliparous women by shifting the Stem cell 1 to a Stem cell 2, making this the postulated mechanism of protection conferred by early full-term pregnancy. The identification of a putative breast stem cell (Stem cell 1) has reached in the last decade a significant impulse and several markers also reported for other tissues have been found in the mammary epithelial cells of both rodents and humans. The data obtained thus far is supporting the concept that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland, which results in the replacement of the Stem cell 1 that is a component of the nulliparous breast epithelium with a new stem cell, called Stem cell 2, which is characterized by a specific genomic signature. The pattern of gene expression of the stem cell 2 could potentially be used as useful intermediate end points for evaluating the degree of mammary gland differentiation and for evaluating preventive agents such as human chorionic gonadotropin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiyer AR, Honarpour N, Herz J et al (2005) Loss of Apaf-1 leads to partial rescue of the HAND2-null phenotype. Dev Biol 278:155–162

    Article  PubMed  CAS  Google Scholar 

  • Angel P, Szabowski A (2002) Function of AP-1 target genes in mesenchymal-epithelial cross-talk in skin. Biochem Pharmacol 64:949–956

    Article  PubMed  CAS  Google Scholar 

  • Ara J, Bannerman P, Shaheen F et al (2005) Schwann cell-autonomous role of neuropilin-2. J Neurosci Res 79:468–475

    Article  PubMed  CAS  Google Scholar 

  • Ashley T, Plug A (1998) Caught in the act: deducing meiotic function from protein immunolocalization. Curr Top Dev Biol 37:201–239

    Article  PubMed  CAS  Google Scholar 

  • Balogh GB, Heulings R, Mailo D et al (2006) Genomic Signature Induced by pregnancy in the human breast. International J Oncol 28:399–410

    CAS  Google Scholar 

  • Ben-Zur T, Feige E, Motro B et al (2000) The mammalian Odz gene family: homologs of a Drosophila pair-rule gene with expression implying distinct yet overlapping developmental roles. Dev Biol 217:107–120

    Article  PubMed  CAS  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY et al (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422

    Article  PubMed  CAS  Google Scholar 

  • Boulanger CA, Wagner KU, Smith GH (2004) Parityinduced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-betal expression. Oncogene 24.552–560

    Article  CAS  Google Scholar 

  • Boyum A, Fjerdingstad HB, Tennfjord VA et al (2004) Specific antibodies to mouse Sca-1-(Ly-6A/E) or Thy-1-positive haematopoietic progenitor cells induce formation of nitric oxide which inhibits subsequent colony formation. Eur J Haematol 73:427–430

    Article  PubMed  CAS  Google Scholar 

  • Bulfone A, Menguzzato E, Broccoli V et al (2000) Barhl1, a gene belonging to a new subfamily of mammalian homeobox genes, is expressed in migrating neurons of the CNS. Hum Mol Genet 9:1443–1452

    Article  PubMed  CAS  Google Scholar 

  • Bullejos M, Diaz de la Guardia R, Barragan MJ et al (2000) HMG-box sequences from microbats homologous to the human SOX30 HMG-box. Genetica 110:157–162

    Article  PubMed  CAS  Google Scholar 

  • Byrd K, Corces VG (2003) Visualization of chromatin domains created by the gypsy insulator of Drosophila. J Cell Biol 162:565–574

    Article  PubMed  CAS  Google Scholar 

  • Caggana M, Kilgallen J, Conroy JM et al (2001) Associations between ERCC2 polymorphisms and gliomas. Cancer Epidemiol Biomarkers Prev 10:355–360

    PubMed  CAS  Google Scholar 

  • Cassata G, Rohrig S, Kuhn F et al (2000) The Caenorhabditis elegans Ldb/NLI/Clim orthologue ldb-1 is required for neuronal function. Dev Biol 226:45–56

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Xu J, Ying K et al (2004) Molecular cloning and characterization of a novel human BTB domaincontaining gene, BTBD10, which is down-regulated in glioma. Gene 340:61–69

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Corces VG (2001) The gypsy insulator of Drosophila affects chromatin structure in a directional manner. Genetics 159:1649–1658

    PubMed  CAS  Google Scholar 

  • Cremazy F, Berta P, Girard F (2001) Genome-wide analysis of Sox genes in Drosophila melanogaster. Mech Dev 109:371–375

    Article  PubMed  CAS  Google Scholar 

  • Dai YS, Cserjesi P (2002) The basic helix-loop-helix factor, HAND2, functions as a transcriptional activator by binding to E-boxes as a heterodimer. J Biol Chem 277:12604–12612

    Article  PubMed  CAS  Google Scholar 

  • Dai YS, Hao J, Bonin C et al (2004) JAB1 enhances HAND2 transcriptional activity by regulating HAND2 DNA binding. J Neurosci Res 76:613–622

    Article  PubMed  CAS  Google Scholar 

  • Dawid IB, Toyama R, Taira M (1995) LIM domain proteins. C R Acad Sci III 318:295–306

    PubMed  CAS  Google Scholar 

  • D’Cruz CM, Moody SE, Master SR et al (2002) Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol 16:2034–2051

    Article  PubMed  CAS  Google Scholar 

  • De Martino SP, Errington F, Ashworth A et al (1999) sox30: a novel zebrafish sox gene expressed in a restricted manner at the midbrain-hindbrain boundary during neurogenesis. Dev Genes Evol 209:357–362

    Article  PubMed  Google Scholar 

  • Dgany O, Wides R (2002) The Drosophila odz/tenm gene encodes a type I, multiply cleaved heterodimeric transmembrane protein. Biochem J 363:633–643

    Article  PubMed  CAS  Google Scholar 

  • Donnelly RP, Sheikh F, Kotenko SV et al (2004) The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol 76:314–321

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Kawasaki S, Nakamura T et al (2004) The presence of keratin 5 as an IgG Fc binding protein in human corneal epithelium. Exp Eye Res 78:1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Essers J, Hendriks RW, Swagemakers SM et al (1997) Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89:195–204

    Article  PubMed  CAS  Google Scholar 

  • Falke D, Fisher MH, Juliano RL (2004) Selective transcription of p53 target genes by zinc finger-p53 DNA binding domain chimeras. Biochim Biophys Acta 1681:15–27

    PubMed  CAS  Google Scholar 

  • Fiegel HC, Gluer S, Roth B et al (2004) Stem-like cells in human hepatoblastoma. J Histochem Cytochem 52:1495–1501

    Article  PubMed  CAS  Google Scholar 

  • Frasor J, Danes JM, Komm B et al (2003) Profiling of estrogen up-and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144:4562–4574

    Article  PubMed  CAS  Google Scholar 

  • Fukahi K, Fukasawa M, Neufeld G et al (2004) Aberrant expression of neuropilin-1 and-2 in human pancreatic cancer cells. Clin Cancer Res 10:581–590

    Article  PubMed  CAS  Google Scholar 

  • Ghabrial A, Ray RP, Schupbach T (1998) Okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila cogenesis. Genes Dev 12:2711–2723

    PubMed  CAS  Google Scholar 

  • Ginger MR, Rosen JM (2003) Pregnancy-induced changes in cell-fate in the mammary gland. Breast Cancer Res 5:192–197

    Article  PubMed  CAS  Google Scholar 

  • Ginger MR, Gonzalez-Rimbau MF, Gay JP et al (2001) Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol 15:1993–2009

    Article  PubMed  CAS  Google Scholar 

  • Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S et al (2004) Differences between human and mouse embryonic stems cells. Dev Biol 269:360–380

    Article  PubMed  CAS  Google Scholar 

  • Goyal RK, Lin P, Kanungo J et al (1999) Ajuba, a novel LIM protein, interacts with Grb2, augments mitogen-activated protein kinase activity in fibroblasts, and promotes meiotic maturation of Xenopus oocytes in a Grb2-and Ras-dependent manner. Mol Cell Biol 19:4379–4389

    PubMed  CAS  Google Scholar 

  • Haeryfar SM, Hoskin DW (2004) Thy-1: more than a mouse pan-T cell marker. J Immunol 173:3581–3588

    PubMed  CAS  Google Scholar 

  • Harris BZ, Venkatasubrahmanyam S, Lim WA (2002) Coordinated folding and association of the LIN-2,-7 (L27) domain. An obligate heterodimerization involved in assembly of signaling and cell polarity complexes. J Biol Chem 277:34902–34908

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Goodison S, Urquidi V et al (2003) Differential effects of retinoic acid on the growth of isogenic metastatic and non-metastatic breast cancer cell lines and their association with distinct expression of retinoic acid receptor beta isoforms 2 and 4. Int J Oncol 22:623–629

    PubMed  CAS  Google Scholar 

  • Henderson BE, Powell D, Rosario I et al (1974) An epidemiologic study of breast cancer. J Natl Cancer Inst 53:609–614

    PubMed  CAS  Google Scholar 

  • Henderson BE, Ross RK, Pike MC (1993) Hormonal chemoprevention of cancer in women. Science 259:633–638

    Article  PubMed  CAS  Google Scholar 

  • Henry MD, Triplett AA, Oh KB et al (2004) Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene 23:6980–6985

    Article  PubMed  CAS  Google Scholar 

  • Hoatlin ME, Zhi Y, Ball H et al (1999) A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood 94:3737–3747

    PubMed  CAS  Google Scholar 

  • Ito K, Fetten J, Khalili H et al (1997) Oligoclonality of CD8+ T cells in breast cancer patients. Mol Med 3:836–851

    PubMed  CAS  Google Scholar 

  • Iwase H (2003) Molecular action of the estrogen receptor and hormone dependency in breast cancer. Breast Cancer 10:89–96

    PubMed  Google Scholar 

  • Jang CY, Lee JY, Kim J (2004) RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis. FEBS Lett 560:81–85

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, Zhang W, Rudnick A et al (1997) Transcriptional synergy between LIM-homeodomain proteins and basic helix-loop-helix proteins: the LIM2 domain determines specificity. Mol Cell Biol 17:3488–3496

    PubMed  CAS  Google Scholar 

  • Jones MH, Hamana N, Nezu J et al (2000) A novel family of bromodomain genes. Genomics 63:40–45

    Article  PubMed  CAS  Google Scholar 

  • Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15:36–47

    PubMed  CAS  Google Scholar 

  • Kiguchi K, Giometti C, Chubb CH et al (1992) Differentiation induction in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A. Biochem Biophys Res Commun 189:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Kirii Y, Magarian-Blander J, Alter MD et al (1998) Functional and molecular analysis of T cell receptors used by pancreatic-and breast tumor-(mucin-) specific cytotoxic T cells. J Immunother 21:188–197

    Article  PubMed  CAS  Google Scholar 

  • Komitova M, Eriksson PS (2004) Sox-2 is expressed by neural progenitors and astroglia in the adult rat brain. Neurosci Lett 369:24–27

    Article  PubMed  CAS  Google Scholar 

  • Kondoh H, Uchikawa M, Kamachi Y (2004) Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. Int J Dev Biol 48:819–827

    Article  PubMed  CAS  Google Scholar 

  • Koopman P, Schepers G, Brenner S et al (2004) Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene 328:177–186

    Article  PubMed  CAS  Google Scholar 

  • Korioth F, Gieffers C, Maul GG et al (1995) Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment. J Cell Biol 130:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kwon HJ, Breese EH, Vig-Varga E et al (2004) Tumor necrosis factor alpha induction of NF-kappaB requires the novel coactivator SIMPL. Mol Cell Biol 24:9317–9326

    Article  PubMed  CAS  Google Scholar 

  • Lambe M, Hsieh CC, Chan HW et al (1996) Parity, age at first and last birth, and risk of breast cancer: a population-based study in Sweden. Breast Cancer Res Treat 38: 305–311

    Article  PubMed  CAS  Google Scholar 

  • Leasure CS, Chandler J, Gilbert DJ et al (2001) Sequence, chromosomal location and expression analysis of the murine homologue of human RAD51L2/RAD51C. Gene 271:59–67

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Bashan-Ahrend A, Budai-Hadrian O et al (1994) Odd Oz: a novel Drosophila pair rule gene. Cell 77:587–598

    Article  PubMed  CAS  Google Scholar 

  • Li S, Qiu F, Xu A et al (2004) Barhl1 regulates migration and survival of cerebellar granule cells by controlling expression of the neurotrophin-3 gene. J Neurosci 24:3104–3114

    Article  PubMed  CAS  Google Scholar 

  • Lim Y, Lee SM, Kim M et al (2002) Complete genomic structure of human rpS3: identification of functional U15b snoRNA in the fifth intron. Gene 286:291–297

    Article  PubMed  CAS  Google Scholar 

  • Lyamouri M, Enerly E, Lambertsson A (2002) Organization, sequence, and phylogenetic analysis of the ribosomal protein S3 gene from Drosophila virilis. Gene 294:147–156

    Article  PubMed  CAS  Google Scholar 

  • MacMahon B, Cole P, Lin TM et al (1970) Age at first birth and breast cancer risk. Bull World Health Organ 43:209–221

    PubMed  CAS  Google Scholar 

  • Medina D, Kittrell FS (2003) p53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res 63:6140–6143

    PubMed  CAS  Google Scholar 

  • Medina D, Smith GH (1999) Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J Natl Cancer Inst 91:967–969

    Article  PubMed  CAS  Google Scholar 

  • Miller CT, Yelon D, Stainier DY et al (2003) Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint. Development 130:1353–1365

    Article  PubMed  CAS  Google Scholar 

  • Miyagi S, Saito T, Mizutani K et al (2004) The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Mol Cell Biol 24:4207–4220

    Article  PubMed  CAS  Google Scholar 

  • Morikawa Y, Cserjesi P (2004) Extra-embryonic vasculature development is regulated by the transcription factor HAND1. Development 131:2195–2204

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Kataoka K, Fukuhara S et al (2004) Akt-dependent phosphorylation negatively regulates the transcriptional activity of dHAND by inhibiting the DNA binding activity. Eur J Biochem 271:3330–3339

    Article  PubMed  CAS  Google Scholar 

  • Nukaya I, Yasumoto M, Iwasaki T et al (1999) Identi-fication of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte. Int J Cancer 80:92–97

    Article  PubMed  CAS  Google Scholar 

  • Ohira M, Seki N, Nagase T et al (1998) Characterization of a human homolog (BACH1) of the mouse Bach1 gene encoding a BTB-basic leucine zipper transcription factor and its mapping to chromosome 21q22.1. Genomics 47:300–306

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K, Yoshioka T, Ichikawa H, Toki S (2002) Molecular cloning and characterization of RAD51-like genes from Arabidopsis thaliana. Plant Mol Biol Sep 50:71–81

    CAS  Google Scholar 

  • Osaki E, Nishina Y, Inazawa J et al (1999) Identification of a novel Sry-related gene and its germ cell-specific expression. Nucleic Acids Res 27:2503–2510

    Article  PubMed  CAS  Google Scholar 

  • Pai CY, Lei EP, Ghosh D et al (2004) The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell 16:737–748

    Article  PubMed  CAS  Google Scholar 

  • Parnell TJ, Viering MM, Skjesol A et al (2003) An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila. Proc Natl Acad Sci U S A 100:13436–13441

    Article  PubMed  CAS  Google Scholar 

  • Passegue E, Wagner EF, Weissman IL (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119:431–443

    Article  PubMed  CAS  Google Scholar 

  • Pei Y, Sherry DM, McDermott AM (2004) Thy-1 distinguishes human corneal fibroblasts and myofibroblasts from keratocytes. Exp Eye Res 79:705–712

    Article  PubMed  CAS  Google Scholar 

  • Qin Q, Patil K, Sharma SC (2004) The role of Baxinhibiting peptide in retinal ganglion cell apoptosis after optic nerve transection. Neurosci Lett 372:17–21

    Article  PubMed  CAS  Google Scholar 

  • Recht J, Dunn B, Raff A et al (1996) Functional analysis of histones H2A and H2B in transcriptional repression in Saccharomyces cerevisiae. Mol Cell Biol 16:2545–2553

    PubMed  CAS  Google Scholar 

  • Russell MW, Kemp P, Wang L et al (1998) Molecular cloning of the human HAND2 gene. Biochim Biophys Acta 1443:393–399

    PubMed  CAS  Google Scholar 

  • Russo IH, Russo J (1994) Role of hCg and inhibition in breast cancer. International J Oncol 4:297–306

    CAS  Google Scholar 

  • Russo IH, Medado J, Russo J (1989) Endocrine influences on mammary structure and development. In: Jones TC, Mohr U, Hunt RD (eds) Integument and mammary gland laboratory animals. Springer-Verlag, Berlin Heidelberg New York, pp 252–266

    Google Scholar 

  • Russo IH, Koszalka M, Russo J (1991) Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br J Cancer 64:481–484

    PubMed  CAS  Google Scholar 

  • Russo J, Russo IH (1980) Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res 40:2677–2687

    PubMed  CAS  Google Scholar 

  • Russo J, Russo IH (1987a) Development of human mammary gland. In: Nevill MC, Daniel CW (eds) The mammary gland development, regulation, and function. Plenum, New York, pp 67–93

    Google Scholar 

  • Russo J, Russo IH (1987b) Role of differentiation on transformation of human epithelial cells. In: Medina D (ed) Cellular and molecular biology of mammary cancer. Plenum, New York, pp 399–417

    Google Scholar 

  • Russo J, Russo IH (1994) Toward a physiological approach to breast cancer prevention. Cancer Epidemiol Biomarkers Prev 3:353–364

    PubMed  CAS  Google Scholar 

  • Russo J, Russo IH (1997) Role of differentiation in the pathogenesis and prevention of breast cancer. Endocr Relat Cancer 4:1–15

    Article  Google Scholar 

  • Russo J, Russo IH (1998) Development of the human breast. In: Knobil E, Neill JD (eds) Encyclopedia of reproduction, Vol. 3. Academic, New York, pp 71–80

    Google Scholar 

  • Russo J, Russo IH (1999) Cellular basis of breast cancer susceptibility. Oncol Res 11:169–178

    PubMed  CAS  Google Scholar 

  • Russo J, Russo IH (2004) Biological and molecular basis of breast cancer. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Russo J, Reina D, Frederick J et al (1988) Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro. Cancer Res 48:2837–2857

    PubMed  CAS  Google Scholar 

  • Russo J, Mills MJ, Moussalli MJ et al (1989) Influence of human breast development on the growth properties of primary cultures. In Vitro Cell Dev Biol 25:643–649

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Gusterson BA, Rogers AE et al (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244–278

    PubMed  CAS  Google Scholar 

  • Russo J, Rivera R, Russo IH (1992) Influence of age and parity on the development of the human breast. Breast Cancer Res Treat 23:211–218

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Calaf G, Russo IH (1993) A critical approach to the malignant transformation of human breast epithelial cells with chemical carcinogens. Crit Rev Oncog 4:403–417

    PubMed  CAS  Google Scholar 

  • Russo J, Romero AL, Russo IH (1994) Architectural pattern of the normal and cancerous breast under the influence of parity. Cancer Epidemiol Biomarkers Prev 3:219–224

    PubMed  CAS  Google Scholar 

  • Russo J, Ao X, Grill C et al (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Hu YF, Yang X et al (2000) Developmental, cellular, and molecular basis of human breast cancer. J Natl Cancer Inst Monogr 17–37

    Google Scholar 

  • Russo J, Hu YF, Silva ID et al (2001a) Cancer risk related to mammary gland structure and development. Microsc Res Tech 52:204–223

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Lynch H, Russo IH (2001b) Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast J 7:278–291

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Moral R, Balogh GA, Mailo DA, Russo IH (2005) The protective role of pregnancy in breast cancer. Breast Cancer Res J 7:131–142

    Article  Google Scholar 

  • Salomon DS, Bianco C, Ebert AD et al (2000) The EGFCFC family: novel epidermal growth factor-related proteins in development and cancer. Endocr Relat Cancer 7:199–226

    Article  CAS  Google Scholar 

  • Sancar A, Tang MS (1993) Nucleotide excision repair. Photochem Photobiol 57:905–921

    PubMed  CAS  Google Scholar 

  • Sanghavi SK, Shankarappa R, Reinhart TA (2004) Genetic analysis of Toll/Interleukin-1 Receptor (TIR) domain sequences from rhesus macaque Toll-like receptors (TLRs) 1-10 reveals high homology to human TLR/TIR sequences. Immunogenetics 56:667–674

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Samul R, Zimmer J et al (2004) Deficiency of neuropilin 2 suppresses VEGF-induced retinal neovascularization. Mol Med 10:12–18

    PubMed  CAS  Google Scholar 

  • Shen MM, Wang H, Leder P (1997) A differential display strategy identifies Cryptic, a novel EGFrelated gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development 124:429–442

    PubMed  CAS  Google Scholar 

  • Sinha DK, Pazik JE, Dao TL (1988) Prevention of mammary carcinogenesis in rats by pregnancy: effect of full-term and interrupted pregnancy. Br J Cancer 57:390–394

    PubMed  CAS  Google Scholar 

  • Sivaraman L, Medina D (2002) Hormone-induced protection against breast cancer. J Mammary Gland Biol Neoplasia 7:77–92

    Article  PubMed  Google Scholar 

  • Srivastava P, Russo J, Russo IH (1997) Chorionic gonadotropin inhibits rat mammary carcinogenesis through activation of programmed cell death. Carcinogenesis 18:1799–1808

    Article  PubMed  CAS  Google Scholar 

  • Srivastava P, Russo J, Russo IH (1999) Inhibition of rat mammary tumorigenesis by human chorionic gonadotropin associated with increased expression of inhibin. Mol Carcinog 26:10–19

    Article  PubMed  CAS  Google Scholar 

  • Stevanovic M (2003) Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2. Mol Biol Rep 30:127–132

    Article  PubMed  CAS  Google Scholar 

  • Tay LK, Russo J (1981a) 7,12-dimethylbenz[a]anthrac ene-induced DNA binding and repair synthesis in susceptible and nonsusceptible mammary epithelial cells in culture. J Natl Cancer Inst 67:155–161

    PubMed  CAS  Google Scholar 

  • Tay LK, Russo J (1981b) Formation and removal of 7,12-dimethylbenz[a]anthracene-nucleic acid adducts in rat mammary epithelial cells with different susceptibility to carcinogenesis. Carcinogenesis 2:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Thomachot MC, Bendriss-Vermare N, Massacrier C et al (2004) Breast carcinoma cells promote the differentiation of CD34+ progenitors towards 2 different subpopulations of dendritic cells with CD1a(high)CD86(-)Langerin-and CD1a(+)CD86(+)Langerin+ phenotypes. Int J Cancer 110:710–720

    Article  PubMed  CAS  Google Scholar 

  • Thordarson G, Jin E, Guzman RC, Swanson SM, Nandi S, Tamalmantes F (1995) Refractoriness to mammary tumorigenesis in parous rats: it is caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis 16:2847–2853

    Article  PubMed  CAS  Google Scholar 

  • Trapido EJ (1983) Age at first birth, parity, and breast cancer risk. Cancer 51:946–948

    Article  PubMed  CAS  Google Scholar 

  • Trichopoulos D, Lagiou P, Adami HP (2005) Towards an integrated model for breast cancer etiology: the crucial role of the mammary tissue-specific stem cells. Breast Cancer Res 7:13–17

    Article  PubMed  Google Scholar 

  • Troelstra C, van Gool A, de Wit J et al (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71:939–953

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki T, Fujii Y, Sakumi K et al (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci U S A 93:6236–6240

    Article  PubMed  CAS  Google Scholar 

  • Vessey MP, McPherson K, Roberts MM et al (1985) Fertility in relation to the risk of breast cancer. Br J Cancer 52:625–628

    PubMed  CAS  Google Scholar 

  • Vig E, Green M, Liu Y et al (2001) SIMPL is a tumor necrosis factor-specific regulator of nuclear factorkappaB activity. J Biol Chem 276:7859–7866

    Article  PubMed  CAS  Google Scholar 

  • Vitale M, Pelusi G, Taroni B et al (2005) HLA class I antigen down-regulation in primary ovary carcinoma lesions: association with disease stage. Clin Cancer Res 11:67–72

    PubMed  CAS  Google Scholar 

  • Vorherr H (1974) The breast. New York, Academic

    Google Scholar 

  • Wagner KU, Boulanger CA, Henry MD et al (2002) An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 129:1377–1386

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Toyoda R, Nakamura H (2004) Navigation of trochlear motor axons along the midbrainhindbrain boundary by neuropilin 2. Development 131:681–692

    Article  PubMed  CAS  Google Scholar 

  • Watts GS, Oshiro MM, Junk DJ et al (2004) The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells. Neoplasia 6:187–194

    Article  PubMed  CAS  Google Scholar 

  • Wei CC, Ho TW, Liang WG et al (2003) Cloning and characterization of mouse IL-22 binding protein. Genes Immun 4:204–211

    Article  PubMed  CAS  Google Scholar 

  • Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55:231–273

    PubMed  CAS  Google Scholar 

  • Wolk K, Kunz S, Witte E et al (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241–254

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Firulli AB, Zhang X et al (2003) HAND2 synergistically enhances transcription of dopaminebeta-hydroxylase in the presence of Phox2a. Dev Biol 262:183–193

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Narita T, Inukai N et al (2001) SPT genes: key players in the regulation of transcription, chromatin structure and other cellular processes. J Biochem (Tokyo) 129:185–191

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Akira S (2004) TIR domain-containing adaptors regulate TLR-mediated signaling pathways]. Nippon Rinsho 62:2197–2203

    PubMed  Google Scholar 

  • Yang MY, Liu TC, Chang JG et al (2003) JunB gene expression is inactivated by methylation in chronic myeloid leukemia. Blood 101:3205–3211

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Moyon D, Pardanaud L et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    PubMed  CAS  Google Scholar 

  • Zhou W, Liu G, Miller DP et al (2002) Gene-environment interaction for the ERCC2 polymorphisms and cumulative cigarette smoking exposure in lung cancer. Cancer Res 62:1377–1381

    PubMed  CAS  Google Scholar 

  • Zhou Y, Hagood JS, Murphy-Ullrich JE (2004) Thy-1 expression regulates the ability of rat lung fibroblasts to activate transforming growth factor-beta in response to fibrogenic stimuli. Am J Pathol 165:659–669

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Russo, J., Balogh, G., Mailo, D., Russo, P.A., Heulings, R., Russo, I.H. (2007). The Genomic Signature of Breast Cancer Prevention. In: Senn, HJ., Kapp, U. (eds) Cancer Prevention. Recent Results in Cancer Research, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37696-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37696-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37695-8

  • Online ISBN: 978-3-540-37696-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics