Skip to main content

Abstract

  • Night vision complaints can complicate corneal photorefractive corrections and are related to the altered corneal optical properties after surgery.

  • Improvement of laser algorithms, energy delivery improvements, and active trackers have significantly improved the optical results of refractive surgery and minimized visual complaints of the treated patients over the last few years.

  • The introduction of wavefront aberrometry in the clinical practice offered a better understanding of the optical results of corneal photorefractive surgery, and may be a useful tool to achieve the socalled supervision in the future.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-540-37584-5_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gartry DS, Kerr Muir MG, Marshall J (1991) Photorefractive keratectomy with an argon fluoride excimer laser: a clinical study. J Refract Corneal Surg 7:420–435

    CAS  Google Scholar 

  2. O’ Bart DP, Lohmann CP, Fitzkke FW et al (1994) Discrimination between the origins and functional implications of haze and halo at night after photorefractive keratectomy. J Refract Corneal Surg 10(Suppl):S281

    Google Scholar 

  3. Yamane N, Miyata K, Samejima T et al (1004) Ocular high order aberrations and contrast sensitivity after conventional laser in situ keratomileusis. Invest Ophthalmol Vis Sci 45:3986–3989

    Article  Google Scholar 

  4. Holladay JT, Dudeja DR, Chang J (1999) Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography. J Cataract Refract Surg. 25:663–669

    Article  PubMed  CAS  Google Scholar 

  5. Hiatt AJ, Grant CN, Boxer Waxler BS (2005) Establishing analysis parameters for spherical aberration after Wavefront LASIK. Ophthalmology 112:998–1002

    Article  PubMed  Google Scholar 

  6. Pop M, Payete Y (2004) Risk factors for night vision complaints after LASIK for myopia. Ophthalmology 111:3–10

    Article  PubMed  Google Scholar 

  7. Holladay JT, Janes JA (2002) Topographic changes in corneal asphericity and effective optical zone size after laser in situ keratomileusis. J Cataract Refract Surg 28:942–7

    Article  PubMed  Google Scholar 

  8. Boxer Wachler BS, Huynh VN, El Shiaty AF et al (2002) Evaluation of corneal functional optical zone after laser in situ keratomileusis. J Cataract Refract Surg 28:948–953

    Article  PubMed  Google Scholar 

  9. Chalita MR, Chavala S, Xu, Krueger RR (2004) Wavefront Analysis in post LASIK eyes and its correlation with visual symptoms, refraction and topography. Ophthalmology 111:447–453

    Article  PubMed  Google Scholar 

  10. Tuan KM, Chernyak D, Fedman ST (2006) Predicting patients’ night vision complaints with wavefront technology. Arch Ophth 141:1–6

    Article  Google Scholar 

  11. Pallikaris IG, Siganos DS, Katsanevaki VJ (1998) LASIK complications and their management. In: Pallikaris IG, Siganos DS (eds) LASIK. Slack, Thorofare, N.J., pp 257–274

    Google Scholar 

  12. Alkara N, Genth U, Seiler T (1999) Diametral ablation: a technique to manage decentered photorefractive keratectomy for myopia. J Refract Surg 15:436–440

    PubMed  CAS  Google Scholar 

  13. Alio JL, Artola A, Rodriguez-Mier FA (2000) Selective zonal ablation with excimer laser for the correction of the irregular astigmatism induced by refractive surgery. Ophthalmology 107:662–673

    Article  PubMed  CAS  Google Scholar 

  14. Pallikaris IG, Katsanevaki VJ (2000) Management of eccentric ablations. In: McRae SM, Krueger RR, Applegate RA (eds) Customized corneal ablation: the quest for supervision. Slack, Thorofare, N.J., pp 293–298

    Google Scholar 

  15. Alessio G, Boscia F, La Tegola MG, Sborgia C (2001) Topography-driven excimer laser for the retreatment of decentralized myopic photorefractive keratectomy. Ophthalmology 108:1695–1703

    Article  PubMed  CAS  Google Scholar 

  16. Alessio G, Boscia F, La Tegola MG, Sborgia C (2001) Corneal interactive programmed topographic ablation customized photorefractive keratectomy for correction of postkeratoplasty astigmatism. Ophthalmology 108:2029–2037

    Article  PubMed  CAS  Google Scholar 

  17. Knorz MC, Jendritza B (2000) Topographically guided laser in situ keratomileusis to treat corneal irregularities. Ophthalmology 107:1138–1143

    Article  PubMed  CAS  Google Scholar 

  18. Knorz MC, Neuhann T (2000) Treatment of myopia and myopic astigmatism by customized laser in situ keratomileusis based on corneal topography. Ophthalmology 107:2072–2076

    Article  PubMed  CAS  Google Scholar 

  19. Alessio G, Boscia F, La Tegola MG, Sborgia C (2000) Topography-driven photorefractive keratectomy: results of corneal interactive programmed topographic ablations software. Ophthalmology 107:1578–1587

    Article  PubMed  CAS  Google Scholar 

  20. Kymionis GD, Panagopoulou SI, Aslanides IM, Plainis S, Astyrakakis N, Pallikaris IG (2004) Topographically supported customized ablation for the management of decentered laser in situ keratomileusis Am J Ophthalmol 137:806–811

    Article  PubMed  Google Scholar 

  21. Roberts C (1994) Characterization of the inherent error in a spherically-biased corneal topography system in mapping a radially aspheric surface. J Refract Corneal Surg 10:103–116

    PubMed  CAS  Google Scholar 

  22. Roberts C (1995) Analysis of the inherent error of the TMS-1 topographic modeling system in mapping a radially aspheric surface. Cornea 14:258–265

    Article  PubMed  CAS  Google Scholar 

  23. Mrochen M, Krueger RR, Bueeler M, Seiler T (2002) Aberration sensing and wavefront guided laser in situ keratomileusis: management of decentered ablation. J Refract Surg 18:418–429

    PubMed  Google Scholar 

Bibliography

  • Albarran-Diego C, Munoz G, Montes-Mico R, Rodriguez A, Alio JL (2006) Corneal aberration changes alter hyperopic LASIK: a comparison between the VISX Star S2 and the Asclepion-Meditec MEL 70 G Scan excimer lasers. J Refract Surg 2:34–42

    Google Scholar 

  • Carones F, Vigo L, Scandola E (2006) Wavefront-guided treatment of symptomatic eyes using the LADAR6000 excimer laser. J Refract Surg 22:S983–S989

    PubMed  Google Scholar 

  • Carones F, Vigo L, Scandola E (2003) Wavefront-guided treatment of abnormal eyes using the LADARVision platform. J Refract Surg 19:S703–S708

    PubMed  Google Scholar 

  • El-Danasoury A, Bains HS (2005) Optimized prolate corneal ablation: case report of the first treated eye. J Refract Surg 21(5 Suppl): S598–S602

    PubMed  Google Scholar 

  • Gatinel D, Malet J, Hoang-Xuan T, Azar DT (2004) Corneal asphericity change after excimer laser hyperopic surgery: theoretical effects on corneal profiles and corresponding Zernike expansions. Invest Ophthalmol Vis Sci 45:1349–1359

    Article  PubMed  Google Scholar 

  • Gatinel D, Malet J, Hoang-Xuan T, Azar DT (2002) Analysis of customized corneal ablations: theoretical limitations of increasing negative asphericity. Invest Ophthalmol Vis Sci 43:941–948

    PubMed  Google Scholar 

  • Hersh PS, Fry K, Blaker JW (2003) Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology. J Cataract Refract Surg 29:2096–2104

    Article  PubMed  Google Scholar 

  • Hori-Komai Y, Toda I, Asano-Kato N, Ito M, Yamamoto T, Tsubota K (2006) Comparison of LASIK using the NIDEK EC-5000 optimized aspheric transition zone (OATz) and conventional ablation profile. J Refract Surg 22:546–555

    PubMed  Google Scholar 

  • Jankov MR, Panagopoulou SI, Tsiklis NS, Hajitanasis GC, Aslanides M, Pallikaris G (2006) Topography-guided treatment of irregular astigmatism with the wavelight excimer laser. J Refract Surg 22:335–344

    PubMed  Google Scholar 

  • Kanjani N, Jacob S, Agarwal A, Agarwal A, Agarwal S, Agarwal T, Doshi A, Doshi S (2004) Wavefrontand topography-guided ablation in myopic eyes using Zyoptix. J Cataract Refract Surg 30:398–402

    Article  PubMed  Google Scholar 

  • Kermani O, Schmiedt K, Oberheide U, Gerten G (2003) Early results of Nidek customized aspheric transition zones (CATz) in laser in situ keratomileusis. J Refract Surg 19(2 Suppl):S190–S194

    PubMed  Google Scholar 

  • Koller T, Iseli HP, Hafezi F, Mrochen M, Seiler T (2006) Q-factor customized ablation profile for the correction of myopic astigmatism. J Cataract Refract Surg 32:584–589

    Article  PubMed  Google Scholar 

  • Lin DY, Manche EE (2004) Custom-contoured ablation pattern method for the treatment od decentered laser ablations. J Cataract Refract Surg 30:1675–1684

    Article  PubMed  Google Scholar 

  • Llorente L, Barbero S, Merayo J, Marcos S (2004) Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia. J Refract Surg 20:203–216

    PubMed  Google Scholar 

  • Manns F, Ho A, Parel JM, Culbertson W (2002) Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration. J Cataract Refract Surg 28:766–74

    Article  PubMed  Google Scholar 

  • Mantry S, Yeung I, Shah S (2004) Aspheric ablation with the Nidek EC-5000 CXII with OPD-Scan objective analysis. J Refract Surg 20(5 Suppl):S666–S668

    PubMed  Google Scholar 

  • Marcos S, Cano D, Barbero S (2003) Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm. J Refract Surg 19:S592–S596

    PubMed  Google Scholar 

  • Mastropasqua L, Toto L, Zuppardi E, Nubile M, Carpineto P, Di Nicola M, Ballone E (2006) Photorefractive keratectomy with aspheric profile of ablation versus convencional photorefractive keratectomy for myopia correction: six-month controlled clinical trial. J Cataract Refract Surg 32:109–116

    Article  PubMed  Google Scholar 

  • Mrochen M, Donitzky C, Wullner C, Loffler J (2004) Wavefront-optimized ablation profiles: theoretical background. J Cataract Refract Surg 30:775–785

    Article  PubMed  Google Scholar 

  • Reinstein DZ, Neal DR, Vogelsang H, Schroeder E, Nagy ZZ, Bergt M, Copland J, Topa D (2004) Optimized and wavefront guided corneal refractive surgery using the Carl Zeiss Meditec platform: the WASCA aberrometer, CRS-Master, and MEL80 excimer laser. Ophthalmol Clin North Am 17:191–210

    Article  PubMed  Google Scholar 

  • Sarkisian KA, Petrov AA (2002) Clinical experience with the customized low spherical aberration ablation profile for myopia. J Refract Surg 18(3 Suppl):S352–S356

    PubMed  Google Scholar 

  • Vinciguerra P, Camesasca FI, Calossi A (2003) Statistical analysis of physiological aberrations of the cornea. J Refract Surg 19(Suppl): S265–S269

    PubMed  Google Scholar 

  • Vinciguerra P, Munoz MI, Camesasca FI(2002) Reduction of spherical aberration: experimental model of photoablation. J Refract Surg 18(3 Suppl):S366–S370

    PubMed  Google Scholar 

  • Yeung IY, Mantry S, Cunliffe IA, Benson MT, Shah S (2004) Higher order aberrations with aspheric ablations using the Nidek EC-5000 CXII laser. J Refract Surg 20(5 Suppl):S659–S662

    PubMed  Google Scholar 

  • Yoon G, Macrae S, Williams DR, Cox IG (2005) Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg 31:127–135

    Article  PubMed  Google Scholar 

References

  1. Uozato H, Guyton DL (1987) Centering corneal surgical procedures. Am J Ophthalmol 103:264–275

    PubMed  CAS  Google Scholar 

  2. Fry GA (1969) Geometrical optics. Chilton, Philadelphia, p 110

    Google Scholar 

  3. Smith EM, Talamo JH (1995) Evaluation of ocular cyclotorsion using a Maddox double-rod technique. J Cataract Refract Surg 21:402–403

    PubMed  Google Scholar 

  4. Uozato H, Guyton DL, Waring GO (1992) Centering corneal surgical procedures. In: Waring GO (ed) Refractive keratotomy for myopia and astigmatism. Mosby-Year Book, St. Louis, pp 491–505

    Google Scholar 

  5. Porter J, Yoon G, Lozano D et al (2006) Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations. J Cataract Refract Surg 32:21–32

    Article  PubMed  Google Scholar 

  6. Mrochen M, Kaemmerer M, Mierdel P et al (2001) Increased higher order aberrations after laser refractive surgery: a problem of subclinical decentration. J Cataract Refract Surg 27:362–369

    Article  PubMed  CAS  Google Scholar 

  7. Azar DT, Yeh, PC (1997) Corneal topographic evaluation of decentration in photorefractive keratectomy: treatment displacement vs intraoperative drift. Am J Ophthalmol 124:312–320

    PubMed  CAS  Google Scholar 

  8. Doane JF, Cavanaugh TB, Durrie DS et al (1995) Relation of visual symptoms to topographic ablation zone decentration after excimer laser photorefractive keratectomy. Ophthalmology 102:42–47

    PubMed  CAS  Google Scholar 

  9. Bueeler M, Mrochen M, Seiler T (2003) Maximum permissible lateral decentration in aberration sensing and wavefront guided corneal ablation. J Cataract Refract Surg 29:257–263

    Article  PubMed  Google Scholar 

  10. Talamo JH, Wagoner MD, Lee SY (1995) Management of ablation decentration following excimer photorefractive keratectomy. Arch Ophthalmol 113:706–707

    PubMed  CAS  Google Scholar 

  11. Lafond G, Bonnet S, Solomon L (2004) Treatment of previous decentered excimer laser ablation with combined myopic and hyperopic ablations. J Refract Surg 20:139–148

    PubMed  Google Scholar 

  12. Tamayo GE, Serrano MG (2000) Early clinical experience using custom excimer laser ablations to treat irregular astigmatism. J Cataract Refract Surg 26:1442–1450

    Article  Google Scholar 

  13. Lin DY, Manche EE (2004) Custom contoured ablation pattern method for the treatment of decentered laser ablations. J Cataract Refract Surg 30:1675–1684

    Article  PubMed  Google Scholar 

  14. Mrochen M, Krueger RR, Bueeler M et al (2002) Aberration sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation. J Refract Surg 18:418–429

    PubMed  Google Scholar 

References

  1. Alió JL, Belda JI, Patel S (2004) Treating irregular astigmatism and keratoconus. Highlights of Ophthalmology International, Miami 2004, pp 1–14

    Google Scholar 

  2. Alió JL, Belda JI (2004) Practical Guidelines for the correction of irregular astigmatism and keratoconus. In: Alió JL, Belda JI, Patel S (eds) Treating irregular astigmatism and keratoconus, Highlights of Ophthalmology International, Miami 2004, pp 335, 342

    Google Scholar 

  3. Goggin M, Alpins N, Schmid LM (2000) Management of irregular astigmatism. Curr Opin Ophthalmol 11:260–266

    Article  PubMed  CAS  Google Scholar 

  4. Alió JL, Shabayek MH (2006) Corneal higher order aberrations: a method to grade keratoconnus. J Refract Surg 22:539–545

    PubMed  Google Scholar 

  5. Caliz A, Montes-Mico R, Belda JI, Alió JL (2004) Corneal aberrometry as a guide for the correction of irregular astigmatism. In: Treating irregular astigmatism and the keratoconus. Highlights of Ophthalmology International, El Dorado, Republic of Panama

    Google Scholar 

  6. Boyd BF, Agarwal A, Alió JL, Krueger RR, Wilson SE (2003) Wavefront analysis, aberrometers and corneal topography. Highlights of Ophthalmology International, El Dorado, Republic of Panama

    Google Scholar 

  7. Berny F (1968) Formation des images retienes: Determination de l’aberration spherique due system de l’œil. Ph.D. thesis, University of Paris

    Google Scholar 

  8. Alió JL, Belda JI, Artola A, García-Lledó M, Osman A (2002) Contact lens fitting in the correction of irregular astigmatism after corneal refractive surgery. J Cataract Refract Surg 28:1750–1757

    Article  PubMed  Google Scholar 

  9. Caliz A, Montes-Mico R, Belda JI, Alió JL (2004) Corneal aberrometry as a guide for the correction of Irregular astigmatism. In: Alio JL, Belda JI (eds) Treating irregular astigmatism and keratoconus. Highlights of Ophthalmology International, El Dorado, Republic of Panama, pp 121–133

    Google Scholar 

  10. Alió JL, Belda JI, Osman AA, Shalaby AMM (2003) Topography-guided laser in situ keratomileusis (TOPOLINK) to correct irregular astigmatism after previous refractive surgery. J Refract Surg 19: 516–527

    PubMed  Google Scholar 

  11. Alió JL, Artola A, Rodríguez-Mier FA (2000) Selective zonal ablations with excimer laser for correction of irregular astigmatism induced by refractive surgery. Ophthalmology 107:662–673

    Article  PubMed  Google Scholar 

  12. Knorz MC, Jendiritza B (2000) Topography guided laser in situ keratomileusis to treat corneal irregularities. Ophthalmology 107:1138–1143

    Article  PubMed  CAS  Google Scholar 

  13. Alio JL, Galal A, Montalban R, Piñero D (2006) Corneal wavefront guided LASIK retreatments for correction of highly aberrated corneas following refractive surgery. J Refract Surg (in press)

    Google Scholar 

  14. Thompson V, Durrie DS, Cavanaugh TB (1993) Philosophy and technique for excimer laser phototherapeutic keratectomy. J Refract Corneal Surg 9:81–85

    Google Scholar 

  15. Pallikaris IG, Katsanevaki VJ, Ginis HS (2004) The PALM technique for the treatment of corneal irregular astigmatism. In: Alio JL, Belda JI (eds). Treating irregular astigmatism and keratoconus. Highlights of Ophthalmology International, El Dorado, Republic of Panama, pp 97–101

    Google Scholar 

  16. Artola A, Alió JL, Bellot JL, Ruiz JM (1993) Protective properties of viscoelastic substances (sodium hyaluronate and 2% hydroxymethyl cellulose) against experimental free radical damage to the corneal endothelium. Cornea 12:109–114

    Article  PubMed  CAS  Google Scholar 

  17. Alió J.L, Javaloy J, Merayo J, Galal A (2004) Automated superficial lamellar keratectomy augmented by excimer laser masked PTK in the management of severe superficial corneal opacities. Br J Ophthalmol 88:1289–1294

    Article  PubMed  Google Scholar 

  18. Alió JL, Uhah J, Barraquer C, Bilgihan K, Anwar M, Melles GRJ (2002) New techniques in Lamellar keratoplasty. Curr Opin Ophthalmol 13:224–229

    Article  PubMed  Google Scholar 

  19. Melles GRJ, Lander F, Rietveld FJR et al (1999) A new surgical technique for deep stromal, anterior lamellar keratoplasty. Br J Ophthalmol 83:327–333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katsanevaki, V.J., Albarrán, C., Piñero, D., Alió, J.L., Talamo, J.H., Alió, J.L. (2008). Optical Aberrations. In: Alió, J.L., Azar, D.T. (eds) Management of Complications in Refractive Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37584-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37584-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37583-8

  • Online ISBN: 978-3-540-37584-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics