Skip to main content

The Cell Cycle, Cell Lineage, and Neuronal Specificity

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 7))

Abstract

The first principle of neuronal differentiation is the generation of cellular diversity which, at least quantitatively, matches that found in the entire remainder of the embryo. More importantly, it is the characteristic differences among neurons (rather than properties which all neurons share to the exclusion of non-neural cells) that enables them to associate selectively and to assemble the synaptic circuits which are the substrates of macroscopic brain function. Neuronal differentiation must be viewed, therefore, not simply as a process by which “zygote” cells generate “nerve” cells, but rather as the systematic derivation from the zygote of a cell population with characteristically diverse properties and synaptic specificities. This review considers some aspects of neuronal specificity and the possible role(s) of the cell cycle and cell lineage in neuronal differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, J.: Post-natal growth and differentiation of the mammalian brain, with implications for a morphological theory of memory. In: Quarton, G., Melnechuk, T., Schmitt, F.O. (Eds.): The Neurosciences. A Study Program. New York: Rockefeller University Press 1967.

    Google Scholar 

  • Angevine, J.B., Jr.: Critical cellular events in the shaping of neural centers. In: Schmitt, F.O. (Ed.): The Neurosciences: A Second Study Program. New York: Rockefeller University Press 1970.

    Google Scholar 

  • Balinsky, B. I.: On the factors controlling the size of the brain and eyes in anuran embryos. J. Exp. Zool. 139, 403 (1958).

    Article  Google Scholar 

  • Benzer, S.: Genetic dissection of behavior. Sci. Am. 229 (6), 24 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Bergey, G. K., Hunt, R. K., Holtzer, H.: Selective effects of bromodeoxyuridine on developing Xenopus laevis retina. Anat. Rec. 175, 271 (1973).

    Google Scholar 

  • Berman, N.J., Hunt, R. K.: The visual projections to the optic tecta in Xenopus after partial extirpation of the embryonic eye. J. Comp. Neurol, (in press) (1975).

    Google Scholar 

  • Blakemore, C., Cooper, G. F.: Development of the brain depends on the visual environment. Nature 228, 477 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Carlson, J. G.: Microdissection studies of the dividing neuroblasts of the grasshopper, Chor-tophaga viridifasciata (De Gees). Chromosoma 5, 199 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A.M.: DNA synthesis and cell division in differentiated avian adrenergic neuroblasts. In: Fauce, K., Olson, L., Zotterman, Y. (Eds.): Dynamics of Regeneration and Growth of Neurons. Oxford: Pergamon Press 1974.

    Google Scholar 

  • Corner, M. A.: Development of the brain of Xenopus laevis after removal of parts of the neural plate. J. Exp. Zool. 153, 301 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Corner, M. A.: Localization of capacities for functional development in the neural plate of Xenopus laevis. J. Comp. Neurol. 123, 243 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W.M., Wenger, E.: Cell loss in the trochlear nucleus of the chick during normal development and after radical extirpation of the optic vesicle. J. Exp. Zool. 164, 267 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Davis, W.J.: Development of locomotor patterns in the absence of peripheral sense organs and muscles. Proc. Natl. Acad. Sci. 70, 956 (1973).

    Google Scholar 

  • Delong, G.R., Sidman, R.L.: Alignment defect of reaggregating cells in cultures of developing brain of relier mutant mice. Develop. Biol. 22, 584 (1970).

    Article  Google Scholar 

  • Detwiler, S.R.: Neuroembryology: An Experimental Study. New York: MacMillan 1936.

    Google Scholar 

  • Eakin, R.M.: Determination and regulation of polarity in the retina of Hyla regilla. Univ. of Calif. Publ. Zool. 51, 245 (1947).

    Google Scholar 

  • Fischer, A.F.Th.: Untersuchungen über die Entwicklung xenoplastischer Augenchimären bei Amphibien. Roux Archiv 163, 81 (1969).

    Article  Google Scholar 

  • Gaze, R. M.: The formation of nerve connections. New York: Academic Press 1970.

    Google Scholar 

  • Gurdon, J.B., Woodland, H.R.: The cytoplasmic control of nuclear activity in animal development. Biol. Rev. 43, 233 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V.: Specificity in neurogenesis. J. Cell Comp. Physiol. Suppl., 1, 60, 81 (1960).

    Google Scholar 

  • Hamburgh, M.: Hormones in development. New York: Academic Press 1973.

    Google Scholar 

  • Harrison, R.G.: Correlation in the development of the eye studied by means of heteroplastic transplantation. Roux Archiv 120, 1 (1929).

    Article  Google Scholar 

  • Hauschild, D.C.: Biogenic amine-containing neurons in chick embryo retina. Ph.D. Thesis, University of Pennsylvania (1974).

    Google Scholar 

  • Herrick, C. J.: The brain of the tiger salamander. Chicago: University of Chicago Press 1948.

    Google Scholar 

  • Hinds, J., Hinds, P.: Early ganglion cell differentiation in the mouse retina: an electron microscopic analysis utilizing serial sections. Develop. Biol. 37, 381 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Hollyfield, J.G.: Differential growth of the neural retina in Xenopus laevis larvae. Develop. Biol. 24, 264 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Holtzer, H.: Reconstitution of the urodele spinal cord following unilateral ablation. I. Chronology of neuron regulation. J. Exp. Zool. 117, 523 (1951).

    Article  Google Scholar 

  • Holtzer, H.: Reconstitution of the urodele spinal cord following unilateral ablation. II. Regeneration of the longitudinal tracts and ectopic synaptic uniens of Mauthner’s fiber. J. Exp. Zool. 119, 263 (1952).

    Article  Google Scholar 

  • Holtzer, H.: Proliferative and quantal cell cycles in myogenesis, chondrogenesis and erythrogenesis. Symp. Cell Biol. 9, 69 (1970).

    Google Scholar 

  • Holtzer, H., Kamrin, R.P.: Development of local coordination centers. Brachial centers in the salamander spinal cord. J. Exp. Zool. 132, 391 (1956).

    Article  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994 (1963).

    PubMed  CAS  Google Scholar 

  • Hunt, R. K.: Developmental programming for retinotectal patterns. In: Ciba Found. Symp. on Cell Patterning, (in press) (1975).

    Google Scholar 

  • Hunt, R.K., Bergey, G.K., Holtzer, H.: 5-Bromodeoxyuridine: Localization of a developmental program in Xenopus optic cup. Develop. Biol, (in press) (1975).

    Google Scholar 

  • Hunt, R.K., Jacobson, M.: Neurogenesis in frogs after early larval treatment with somatotrophin or prolactin. Develop. Biol. 26, 100 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R.K., Jacobson, M.: Development and stability of positional information in Xenopus retinal ganglion cells. Proc. Nat. Acad. Sci. USA 69, 780 (1972a).

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R. K., Jacobson, M.: Specification of positional information in retinal ganglion cells of Xenopus. Stability of the specified state. Proc. Nat. Acad. Sci. USA 69, 2860 (1972b).

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R.K., Jacobson, M.: Specification of positional information in retinal ganglion cells of Xenopus. Assays for analysis of the unspecified state. Proc. Nat. Acad. Sci. USA 70, 503 (1973).

    Article  Google Scholar 

  • Hunt, R.K., Jacobson, M.: Neuronal specificity revisited. Curr. Tops. Develop. Biol. 8, 202 (1974a).

    Google Scholar 

  • Hunt, R.K., Jacobson, M.: Specification of positional information in retinal ganglion cells of Xenopus. Intraocular control of the time of specification. Proc. Nat. Acad. Sci. USA 71 (in press) (1974 b).

    Google Scholar 

  • Hunt, R.K., Jacobson, M.: Rapid realignment of retinal axes in embryonic Xenopus eyes. J. Physiol. (Lond.), (in press) (1974 c).

    Google Scholar 

  • Hunt, R.K., Jacobson, M.: Development of neuronal locus specificity in retinal ganglion cells of Xenopus after surgical eye transection or after fusion of whole embryonic eyes. Develop. Biol, (in press) (1974d).

    Google Scholar 

  • Ikeda, K., Kaplan, W.D.: Patterned neural activity of a mutant Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 66, 765 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, C.O.: The localization of the presumptive cerebral regions of the neural plate of the axolotl larva. J. Embryol. Exp. Morph. 7, 1 (1959).

    PubMed  CAS  Google Scholar 

  • Jacobson, C.O.: Motor nuclei, cranial nerve roots, and fibre pattern in the medulla oblongata after reversal experiments on the neural plate of Axolotl larvae. Zool. Bidr. Uppsala 36, 73(1964).

    Google Scholar 

  • Jacobson, M.: Development of neuronal specificity in retinal ganglion cells. Develop. Biol. 17, 202 (1968a).

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M.: Cessation of DNA synthesis in retinal ganglion cells correlated with the time of specification of their central connections. Develop. Biol. 17, 219 (1968b).

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M.: Developmental neurobiology. New York: Holt, Reinhart and Winston 1970.

    Google Scholar 

  • Jacobson, M., Hirsch, H. V.B., Duda, M., Hunt, R. K.: Dynamics of retinal specification in Rana pipiens. Submitted for review (1974).

    Google Scholar 

  • Jacobson, M., Hunt, R.K.: The origins of nerve cell specificity. Sci. Amer. 227 (2), 26 (1973).

    Article  Google Scholar 

  • Jhaveri, R.R., Schneider, G.E.: Retinal projections in Syrian hamsters: Normal topography and alterations after partial tectum lesions at birth. Anat. Rec. 178, 283 (1974).

    Google Scholar 

  • Kelly, J. P., Cowan, W.M.: Studies on the development of the chick optic tectum. III. Effects of early eye removal. Brain Res. 42, 263 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Mark, R. F.: Re-establishment of proper central-peripheral relations in the nervous system. In: Ciba Found. Symp. on Cell Patterning (in press) 1974.

    Google Scholar 

  • Maturana, H.R., Lettvin, J.Y., Mcculloch, W.S., Pitts, W.H.: Anatomy and physiology of vision in the frog (Rana pipiens). J. Gen. Physiol. Suppl. 43, 129(1960).

    Article  Google Scholar 

  • Miner, N.: Integumental specification of sensory fibers in the development of cutaneous local sign. J. Comp. Neurol. 105, 161 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Nordlander, R. H., Edwards, J.S.: Postembryonic brian development in the monarch butterfly, Danaus plexippus plexippus. I. Cellular events during brain morphogenesis. Roux Archiv 162, 197 (1969a).

    Article  Google Scholar 

  • Nordlander, R.H., Edwards, J.S.: II. Development of the optic lobes. Roux Archiv. 163, 197 (1969b).

    Article  Google Scholar 

  • Piatt, J.: Heterotopic transplantation of brachial spinal cord segments followed by reimplantation into the orthotopic site. J. Exp. Zool. 111, 1 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Prestige, M: Axon and cell numbers in the developing nervous system. Brit. Med. Bull. 30, 107(1974).

    PubMed  CAS  Google Scholar 

  • Schubert, D., Jacob, F.: 5-bromodeoxyuridine-induced differentiation of a neuroblastoma. Proc. Nat. Acad. Sci. USA 67, 247 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Seecof, R.L., Tpelitz, R.L., Gerson, J., Ikeda, K., Donady, J.J.: Differentiation of neuromuscular junctions of embryonic Drosophila cells. Proc. Nat. Acad. Sci. USA 69, 566 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R.L., Rakic, P.: Neuronal migration, with special reference to the developing human brain: A review. Brain Res. 62, 1 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Skarf, B.: Development of binocular single units in the optic tectum of frogs raised with disparate stimulation to the eyes. Brain Res. 51, 352 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Sklar, J.H., Hunt, R.K.: The acquisition of specificity in cutaneious sensory neurons. A reconsideration of the integumental specification hypothesis. Proc. Nat. Acad. Sci. USA 70, 3684(1973).

    Article  PubMed  CAS  Google Scholar 

  • Sperry, R.W.: Neuronal specificity. In: Weiss, P. (Ed.): Genetic Neurology. Chicago: University of Chicago Press 1950.

    Google Scholar 

  • Sperry, R.W.: Regulative factors in the orderly growth of neural circuits. Growth Symp. 10, 63(1951).

    Google Scholar 

  • Stefanelli, A.: Studies on the development of the Mauthner cell. In: Weiss, P. (Ed.): Genetic Neurology. Chicago: University of Chicago Press 1950.

    Google Scholar 

  • Stefanelli, A.: The Mauthnerian apparatus in the Ichthyopsida: Its nature and function and correlated problems of neurohistogenesis. Quant. Rev. Biol. 26, 17 (1951).

    Article  CAS  Google Scholar 

  • Stone, L.S.: Polarization of the retina and the development of vision. J. Exp. Zool. 145, 85 (1960).

    Article  Google Scholar 

  • Straznicky, K., Gaze, R.M.: Growth of the retina in Xenopus laevis. An autoradiographic study. J. Embryol. Exp. Morph. 26, 67 (1971).

    PubMed  CAS  Google Scholar 

  • Straznicky, K., Gaze, R. M.: The development of the tectum in Xenopus laevis. An autoradiographic study. J. Embryol. Exp. Morph. 26, 67 (1972).

    Google Scholar 

  • Taber, E.: Histogenesis of brain stem neurons studied autoradiographically with thymidine-3 H in the mouse. Anat. Rec. 145, 291 (1963).

    Google Scholar 

  • Whittaker, J.R.: Segregation during ascidian embryogenesis of egg cytoplasmic information for tissue-specific enzyme development. Proc. Natl. Acad. Sci. 70, 2096 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L.: Positional information and pattern formation. Curr. Tops. Develop. Biol. 6, 183 (1971).

    Article  CAS  Google Scholar 

  • Woodward, D.J., Altman, J., Hoffer, B.J.: Electrophysiology and pharmacology of Purkinje cells in rat cerebellum degranulated by postnatal X-irradiation. Soc. Neurosci. Abstr. 3, 368(1973).

    Google Scholar 

  • Yoon, M.: Transposition of the visual projection from the nasal hemiretina onto the foreign rostral zone of the optic tectum in goldfish. Exp. Neurol. 37, 451 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunt, R.K. (1975). The Cell Cycle, Cell Lineage, and Neuronal Specificity. In: Reinert, J., Holtzer, H. (eds) Cell Cycle and Cell Differentiation. Results and Problems in Cell Differentiation, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37390-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37390-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21693-4

  • Online ISBN: 978-3-540-37390-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics