Skip to main content

Navigation Functions for Dynamical, Nonholonomically Constrained Mechanical Systems

  • Chapter

Abstract

In this review we explore the possibility of adapting first order hybrid feedback controllers for nonholonomically constrained systems to their dynamical counterparts. For specific instances of first order models of such systems, we have developed gradient based hybrid controllers that use Navigation functions to reach point goals while avoiding obstacle sets along the way. Just as gradient controllers for standard quasi-static mechanical systems give rise to generalized “PD-style” controllers for dynamical versions of those standard systems, so we believe it will be possible to construct similar “lifts” in the presence of non-holonomic constraints notwithstanding the necessary absence of point attractors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koditschek DE (1989) Robot planning and control via potential functions. In Khatib O, Craig J, Lozano-Pérez T, eds.: The Robotics Review. MIT Press 349–368

    Google Scholar 

  2. Thompson SW, Tait PG (Cambridge) Treatise on Natural Philosophy. University of Cambridge Press, 1886

    Google Scholar 

  3. Arimoto S, Miyazaki F (1984) Stability and robustness of PID feedback control for robot manipulators of sensory capability. In: Robotics Research, First International Symposium, Cambridge, MA, MIT Press

    Google Scholar 

  4. Khatib O, Maitre JFL (1978) Dynamic control of manipulators operating in a complex environment. In: Proceedings Third International CISM-IFToMM Symposium, Udine, Italy 267–282

    Google Scholar 

  5. Khatib O (1986) Real time obstacle avoidance for manipulators and mobile robots. 5(1):90–99

    Google Scholar 

  6. Rimon E, Koditschek DE (1992) Exact robot navigation using Artificial potential fields. IEEE Transactions on Robotics and Automation 8(5):501–518

    Article  Google Scholar 

  7. Koditschek DE, Rimon E (1990) Robot navigation functions on manifolds with boundary. Advances in Applied Mathematics 11:412–442

    Article  MATH  MathSciNet  Google Scholar 

  8. Cowan NJ, Weingarten JD, Koditschek DE (2002) Visual servoing via navigation functions. IEEE Trans. Rob. Aut. 18:521–533

    Article  Google Scholar 

  9. Koditschek DE, Bozma HI (2001) Assembly as a noncooperative game of its pieces: analysis of 1d sphrere assemblies. Robotica 19(1):93–108

    Article  Google Scholar 

  10. Karagoz C, Bozma H, Koditschek D (2004) Feedback-based event-driven parts moving. IEEE Transactions on Robotics and Automation 20(6):1012–1018

    Google Scholar 

  11. Koditschek DE (1991) Applications of natural motion control. ASME Journal of Dynamic Systems, Measurement, and Control 113(4):552–557

    Article  MATH  Google Scholar 

  12. Bloch A (2003) Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics. Springer-Verlag NY

    Google Scholar 

  13. Brockett RW (1981) New Directions in Applied Mathematics. In: Control theory and singular riemannian geometry. Springer 11–27

    Google Scholar 

  14. Lopes GAD, Koditschek DE (2006) Visual servoing for nonholonomically constrained three degree of freedom kinematic systems. submitted to IEEE Int. Journal of Computer Vision, Special Issue: Vision and Robotics

    Google Scholar 

  15. Lopes GAD, Koditschek DE (2004) Level sets and stable manifold approximations for perceptually driven nonholonomically constrained navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan

    Google Scholar 

  16. Fečkan M (2001) A generalization of Bendixson's criterion. In: Proceedings of the American Mathematical Society. Volume 129. 3395–3399

    Article  MATH  MathSciNet  Google Scholar 

  17. Fečkan M (2001) Criteria on the nonexistence of invariant lipschitz submanifolds for dynamical systems. Journal of differential Equations (174):392–419

    Google Scholar 

  18. Li MY (200) Dynamics of differential equations on invariant manifolds. Journal of differential Equations (168):295–320

    Google Scholar 

  19. Giraldo L, Gascón FG (2000) New proof and generalizations of the demidowitsch-schneider criterion. Journal of Mathematical Physics 41(9)

    Google Scholar 

  20. Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamica Systems, and Bifurcations of Vector Fields. Verlag, New York

    Google Scholar 

  21. Koditschek DE (1987) Adaptive techniques for mechanical systems. In: Fifth Yale Workshop on Applications of Adaptive Systems Theory, New Haven, CT, Center for Systems Science, Yale University 259–265

    Google Scholar 

  22. Goldstein H (1950) Classical Mechanics. Addison-Wesley, Reading Mass.

    Google Scholar 

  23. Bloch A, Reyhanoglu M, McClamroch H (1992) Control and stabilization of nonholonomic dynamical systems. IEEE Trans. Aut. Control 37:1746–1757

    Article  MATH  MathSciNet  Google Scholar 

  24. (MacDuffee CC) The Theory of Matrices. (reprint of first edition) edn. Chelsea Publishing Company, New York

    Google Scholar 

  25. Bellman R (1965) Introduction to Matrix Analysis. McGraw Hill, New York

    Google Scholar 

  26. Koditschek DE (1987) Robot Control Systems. In: Encyclopedia of Artificial Inteligence. John Wiley and Sons, Inc. 902–923

    Google Scholar 

  27. Bloch A, Krishnaprasad P, Marsden J, Murray R (1996) Nonholonomic mechanical systems with symmetry. Arch. Rat. Mech. An. 136:21–99

    Article  MATH  MathSciNet  Google Scholar 

  28. Kantor G, Rizzi A (2003) Sequential composition for control of underactuated systems. Technical Report CMU-RI-TR-03-23, Robotics Institute, Carnegie Mellon

    Google Scholar 

  29. Burridge RR, Rizzi AA, Koditschek DE (1999) Sequential composition of dynamically dexterous robot behaviors. The International Journal of Robotics Research 18(6):534–555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Lopes, G.A., Koditschek, D.E. (2006). Navigation Functions for Dynamical, Nonholonomically Constrained Mechanical Systems. In: Kawamura, S., Svinin, M. (eds) Advances in Robot Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37347-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37347-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37346-9

  • Online ISBN: 978-3-540-37347-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics