Skip to main content

Motion Planning of Human-Like Movements in the Manipulation of Flexible Objects

  • Chapter
Advances in Robot Control

Abstract

The paper deals with modeling of human-like reaching movements in dynamic environments. A simple but not trivial example of reaching in a dynamic environment is the rest-to-rest manipulation of a multi-mass flexible object (underactuated system) with the elimination of residual vibrations. This a complex, sport-like movement task where the hand velocity profiles can be quite different from the classical bell shape and may feature multiple phases. First, we establish the Beta function as a model of unconstrained reaching movements and analyze it properties. Based on this analysis, we construct a model where the motion of the most distal link of the object is specified by the lowest order polynomial, which is not uncommon in the control literature. Our experimental results, however, do not support this model. To plan the motion of the system under consideration, we develop a minimum hand jerk model that takes into account the dynamics of the flexible object and show that it gives a satisfactory prediction of human movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morasso P (1981) Spatial control of arm movements. Experimental Brain Research 42:223–227

    Article  Google Scholar 

  2. Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348

    Article  Google Scholar 

  3. Bernstein N (1967) The Coordination and Regulation of Movements. Pergamon, London

    Google Scholar 

  4. Arimoto S, Sekimoto M, Hashiguchi H, Ozawa R (2005) Natural resolution of illposedness of inverse kinematics for redundant robots: A challenge to Bernstein's degrees-of-freedom problem. Advanced Robotics 19(4):401–434

    Article  Google Scholar 

  5. Tsuji T, Tanaka Y, Morasso P, Sanguineti V, Kaneko M (2002) Bio-mimetic trajectory generation of robots via Artificial potential fleld with time base generator. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews 32(4):426–439

    Article  Google Scholar 

  6. Kawato M (1999) Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9:718–727

    Article  Google Scholar 

  7. Flash T, Hogan N, Richardson M (2003) Optimization principles in motor control. In Arbib M, ed.: The Handbook of Brain Theory and Neural Networks. 2nd edn. MIT Press, Cambridge, Massachusetts 827–831

    Google Scholar 

  8. Nagasaki H (1989) Asymmetric velocity profiles and acceleration profiles of human arm movements. Experimental Brain Research 74:319–326

    Article  Google Scholar 

  9. Milner T, Ijaz M (1990) The effect of accuracy constraints on three-dimensional movement kinematics. Neuroscience 35(2):365–374

    Article  Google Scholar 

  10. Wiegner A, Wierbicka M (1992) Kinematic models and elbow flexion movements: Quantitative analysis. Experimental Brain Research 88:665–673

    Article  Google Scholar 

  11. Flash T, Hogan N (1985) The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience 5(7):1688–1703

    Google Scholar 

  12. Milner T (1992) A model for the generation of movements requiring endpoint precision. Neuroscience 49(2):487–496

    Article  MathSciNet  Google Scholar 

  13. Berthier N (1996) Learning to reach: A mathematical model. Developmental Psychology 32(5):811–823

    Article  MathSciNet  Google Scholar 

  14. Arimoto S, Hashiguchi H, Sekimoto M, Ozawa R (2005) Generation of natural motions for redundant multi-joint systems: A differential-geometric approach based upon the principle of least actions. Journal of Robotic Systems 22(11):583–605

    Article  MATH  Google Scholar 

  15. Arimoto S, Sekimoto M (2006) Human-like movements of robotic arms with redundant dofs: Virtual spring-damper hypothesis to tackle the bernstein problem. In: Proc. IEEE Int. Conf. on Robotics and Automation, Orlando, USA 1860–1866

    Google Scholar 

  16. Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model. Biological Cybernetics 61:89–101

    Article  Google Scholar 

  17. Aspinwall D (1990) Acceleration profiles for minimizing residual response. ASME Journal of Dynamic Systems, Measurement, and Control 102(1):3–6

    Article  Google Scholar 

  18. Meckl P, Seering W (1990) Experimental evaluation of shaped inputs to reduce vibration for a cartesian robot. ASME Journal of Dynamic Systems, Measurement, and Control 112(1):159–165

    Article  Google Scholar 

  19. Karnopp B, Fisher F, Yoon B (1992) A strategy for moving a mass from one point to another. Journal of the Frankline Institute 329(5):881–892

    Article  MATH  Google Scholar 

  20. Meckl P, Kinceler R (1994) Robust motion control of flexible systems using feedforward forcing functions. IEEE Transactions on Control Systems Technology 2(3):245–254

    Article  Google Scholar 

  21. Chan T, Stelson K (1995) Point-to-point motion commands that eliminate residual vibration. In: Proc. American Control Conference. Volume 1., Seattle, Washington 909–913

    Google Scholar 

  22. Piazzi A, Visioli A (2000) Minimum-time system-inversion-based motion planning for residual vibration reduction. IEEE/ASME Transactions on Mechatronics 5(1):12–22

    Article  Google Scholar 

  23. Dingwell J, Mah C, Mussa-Ivaldi F (2004) Experimentally confirmed mathematical model for human control of a non-rigid object. Journal of Neurophysiology 91:1158–1170

    Article  Google Scholar 

  24. Flash T (1983) Organizing Principles Underlying The Formation of Hand Trajectories. PhD thesis, Massachusetts Institute of Technology, Cambridge, USA

    Google Scholar 

  25. Edelman S, Flash T (1987) A model of handwriting. Biological Cybernetics 57:25–36

    Article  Google Scholar 

  26. De Luca A, Oriolo G, Vendittelli M, Iannitti S (2004) Planning motions for robotic systems subject to differential constraints. In Siciliano B, De Luca A, Melchiorri C, Casalino G, eds.: Advances in Control of Articulated and Mobile Robots. Springer Verlag, Berlin 1–38

    Google Scholar 

  27. De Luca A (2000) Feedworward/feedback laws for the control of flexible robots. In: Proc. IEEE Int. Conf. on Robotics and Automation. Volume 1., San-Francisco, California 233–240

    Google Scholar 

  28. Boerlage M, Tousain R, Steinbuch M (2004) Jerk derivative feedforward control for motion systems. In: Proc. American Control Conference. Volume 3., Boston, Massachusetts 4843–4848

    Google Scholar 

  29. Lambrechts P, Boerlage M, Steinbuch M (2005) Trajectory planning and feedforward design for electromechanical systems. Control Engineering Practice 13(2):145–157

    Article  Google Scholar 

  30. Todorov E, Jordan M (1998) Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. Journal of Neurophysiology 80(2):696–714

    Google Scholar 

  31. Suzuki K, Uno Y (2000) Brain adopts the criterion of smoothness for most quick reaching movements. Transactions of the Institute of Electronics, Information and Communication Engineers J83-D-II(2):711–722 (In Japanese)

    Google Scholar 

  32. Richardson M, Flash T (2002) Comparing smooth arm movements with the twothirds power law and the related segmented-control hypothesis. The Journal of Neuroscience 22(18):8201–8211

    Google Scholar 

  33. Luenberger D (1969) Optimization by Vector Space Methods. John Wiley & Sons, New York

    MATH  Google Scholar 

  34. Rose N, Bronson R (1969) On optimal terminal control. IEEE Transactions on Automatic Control 14(5):443–449

    Article  MathSciNet  Google Scholar 

  35. Abramowitz, M. Stegun I, ed. (1972) Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. 10th edn. U.S. Government Printing Office, Washington D.C.

    MATH  Google Scholar 

  36. Dutka J (1981) The incomplete Beta function—a historical profile. Archive for History of Exact Sciences 24:11–29

    Article  MATH  MathSciNet  Google Scholar 

  37. Samko S, Kilbas A, Marichev Y (1993) Integrals and Derivatives of Fractional Order and Their Applications. Gordon and Breach Science Publications

    Google Scholar 

  38. Gel'fand I, Fomin S (1963) Calculus of Variations. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  39. Krylow A, Rymer W (1997) Role of intrinsic muscle properties in producing smooth movements. IEEE Trans. on Biomedical Engineering 44(2):165–176

    Article  Google Scholar 

  40. Harris C (1998) On the optimal control of behaviour: a stochastic perspective. Journal of Neuroscience Methods 83:73–88

    Article  Google Scholar 

  41. Svinin M, Concharenko I, Luo Z, Hosoe S (2006) Reaching movements in dynamic environments: How do we move flexible objects? IEEE Transactions on Robotics 22(4) (in press)

    Google Scholar 

  42. Mason J, Handscomb D (2003) Chebyshev Polynomials. Chapman & Hall / CRC Press, Boca Raton

    MATH  Google Scholar 

  43. Sira-Ramírez H, Agrawal S (2004) differentially Flat Systems. Volume 17 of Control Engineering. Marcel Dekker, Inc., New York

    Google Scholar 

  44. Lévine J, Nguyen D (2003) Flat output characterization for linear systems using polynomial matrices. Systems & Control Letters 48(1):69–75

    Article  MATH  MathSciNet  Google Scholar 

  45. Lee E, Markus L (1967) Foundations of Optimal Control Theory. Wiley, New York

    MATH  Google Scholar 

  46. Kawato M (1995) Motor learning in the brain. Journal of the Robotics Society of Japan 13(1):11–19

    Google Scholar 

  47. Nelson W (1983) Physical principles for economies of skilled movements. Biological Cybernetics 46:135–147

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Svinin, M., Goncharenko, I., Hosoe, S. (2006). Motion Planning of Human-Like Movements in the Manipulation of Flexible Objects. In: Kawamura, S., Svinin, M. (eds) Advances in Robot Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37347-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37347-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37346-9

  • Online ISBN: 978-3-540-37347-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics