Skip to main content

Development of MOEMS Devices and Their Reliability Issues

  • Chapter
Applied Scanning Probe Methods VII

Part of the book series: NanoScience and Technology ((NANO))

  • 1296 Accesses

29.4 Summary

It is believed that MOEMS along with the development of MEMS are expected to have a major impact on our lives, much like the way that the integrated circuit has affected information technology. Some typical MOEMS devices were introduced in this chapter. Their structure and mechanisms were briefly discussed. Some of the failure mechanisms of the MOEMS were also discussed. It is believed that MOEMS failure mechanisms studies and the development of novel stiction, friction, wear, and residual stress reduction techniques will become critical for commercialization of MOEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunsperger RG, (2002) Integrated Optics: Theory and Technology, 5th edn, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  2. Bhushan B (ed) (2004) Handbook of Nanotechnology, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  3. Cho H (2003) Opto-Mechatronic Systems Handbook, CRC, Boca Rota

    Google Scholar 

  4. http://www.mems-exchange.org

    Google Scholar 

  5. http://www-leti.cea.fr/commun/europe/MOEMS/moems.htm

    Google Scholar 

  6. http://www.darpa.mil/MTO/MOEMS/index.html

    Google Scholar 

  7. http://www.researchandmarkets.com/reports/28420/28420.htm

    Google Scholar 

  8. http://www.memsoptical.com/techinfo/memstut1.htm

    Google Scholar 

  9. Hornbeck LJ, Nelson WE (1988) Bistable deformable mirror device, OSA Technical Digest Series Vol. 8: Spatial Light Modulators and Applications, p 107–110

    Google Scholar 

  10. Hornbeck LJ (1999) A digital light processing™ update-status and future applications. Proc Soc Photo-Opt Eng 3634:158–170

    Google Scholar 

  11. Hornbeck LJ (1990) Deformable mirror spatial light modulation. Proc SPIE 1150:86–102

    CAS  Google Scholar 

  12. Hornbeck LJ (2001) The DMD™ projection display chip: a MEMS-based technology. MRS Bull 26:325–328

    Google Scholar 

  13. Douglass MR (1998) Lifetime estimates and unique failure mechanisms of the digital micromirror devices (DMD). In: 1998 International Reliability Physics Proceedings, IEEE Catalog No. 98CH36173. Presented at the 36th Annual International Reliability Physics Symposium, Reno, p 9–16

    Google Scholar 

  14. Bailey WE, Baker JC (1996) Fabrication method for digital micromirror devices using low temperature CVD, US Patent 5,526,951, June 18

    Google Scholar 

  15. Choi JK (2001) Method for manufacturing digital micro-mirror devices (DMD) packages, US Patent Application 2001/0041381 A1, November 15

    Google Scholar 

  16. Hornbeck LJ (1994) Low reset voltage process for DMD, US Patent 5,331,454, July 19

    Google Scholar 

  17. Liu H, Bhushan B (2004) Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy, 100:391–412

    Article  CAS  Google Scholar 

  18. http://www.sandia.gov/media/NewsRel/NR1999/space.htm

    Google Scholar 

  19. http://ngst.gsfc.nasa.gov

    Google Scholar 

  20. http://www.lucent.com/pressroom/lambda.html

    Google Scholar 

  21. http://www.bell-labs.com/news/1999/february/23/mems.jpeg

    Google Scholar 

  22. http://www.spie.org/web/oer/august/aug00/home.html

    Google Scholar 

  23. http://www.techonline.com/community/ed_resource/feature_article/20655

    Google Scholar 

  24. http://www.iridigm.com/tech_overview.htm; http://www.qualcomm.com/qmt

    Google Scholar 

  25. Miles MW (2004) Large area manufacture of MEMS based displays, DTIP of MEMS & MOEMS, Montreux, May 12–14

    Google Scholar 

  26. Miles MW, Larson E, Chui C, Kothari M, Gally B, Batey J (2003) Digital paper™ for reflective displays. J Soc Inf Display 11:209–215

    Article  Google Scholar 

  27. Gally BJ (2004) Wide-Gamut color reflective displays using iMoD interference technology, SID Symp Digest, 35:654

    Article  CAS  Google Scholar 

  28. Miles MW (2000) Digital paper: reflective display using interferometric modulation. SID Symp Digest 31:32

    Article  Google Scholar 

  29. Miles MW (1997) A new reflective FPD technology using interferometric modulation. J Soc Inf Display 5:379–382

    Article  Google Scholar 

  30. http://www.siliconlight.com/htmlpgs/homeset/homeframeset.html

    Google Scholar 

  31. http://www.memsoptical.com/prodserv/products/microlensar.htm

    Google Scholar 

  32. Douglass MR (2003) DMD reliability: a MEMS success story. In: Ramesham R, Tanner D (eds) Proceedings of Reliability, Testing, and Characterization of MEMS/MOMES II, SPIE, Bellingham, p 1–11

    Google Scholar 

  33. Arney S (2001) Designing for MEMS Reliability. MRS Bull 26:296–299

    CAS  Google Scholar 

  34. Bhushan B (1998) Tribology Issues and Opportunities in MEMS, Kluwer, Dordrecht

    Google Scholar 

  35. Bhushan B (1999) Handbook of Micro/Nanotribology, 2nd edn, CRC, Boca Raton

    Google Scholar 

  36. Bhushan B (2001) Macro and microtribology of MEMS materials. In: Bhushan B (ed) Modern Tribology Handbook, Vol 2, p 1515–1548, CRC, Boca Raton

    Google Scholar 

  37. Boer MPD, Mayer TM (2001) Tribology of MEMS. MRS Bull 26:302–304

    Google Scholar 

  38. Fujimasa I (1996) Micromachine, (Oxford Science Press, Oxford)

    Google Scholar 

  39. Kayali S, Lawton R, Stark BH (1999) MEMS reliability assurance activities at JPL, EEE Links 5:10–13

    Google Scholar 

  40. Man KF (2001) MEMS reliability for space applications by elimination of potential failure modes through testing and analysis. http://www-rel.jpl.nasa.gov/Org/5053/atpo/products/Prod-map.html

    Google Scholar 

  41. Man KF, Stark BH, Ramesham R (1998) A Resource Handbook for MEMS Reliability. Rev A JPL Press, Pasadena

    Google Scholar 

  42. Bhushan B (ed) (2005) Nanotribology and Nanomechanics: An Introduction, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  43. Wallace RM, Henck SA, Webb DA (1996) PFPE coating for micro-mechanical devices, US Patent 5,512,374, April 30

    Google Scholar 

  44. Hornbeck LJ (1997), Low surface energy passivation layer for micromachined devices, US Patent 5,602,671, February 11

    Google Scholar 

  45. Henck SA (1997) Lubrication of digital micromirror devices. Tribol Lett 3:239–247

    Article  CAS  Google Scholar 

  46. Lee SH, Kwon MJ, Park JG (1999) Preparation and characterization of perfluoro-organic thin films on aluminium. Surf Coat Tech 112:48–51

    Article  CAS  Google Scholar 

  47. Lee KK, Cha NG, Park JS et al. (2000) Chemical, optical and tribological characterization of perfluoropolymer films as an antiadhesion layer in micromirror arrays. Thin Solid Films 377–378:727–732

    Article  Google Scholar 

  48. Gudeman CS (2001) Vapor phase low molecular weight lubricants, US Patent 6,251,842, B1, June 26

    Google Scholar 

  49. Robbins RA, Jacobs SJ (2001) Lubricant delivery for micromechanical devices, US Patent 6,300,294 B1, Oct. 9

    Google Scholar 

  50. Talghader JJ (2000) MOEMS and miniaturized system II, Proc SPIE 4561:20–27

    Google Scholar 

  51. Tanner DM, Peterson KA, Irwin LW et al. (1998) Linkage design effect on the reliability of surface micormachined microengine driving a load. Proc SPIE 3512:215–226

    Google Scholar 

  52. Tanner DM, Walraven JA, Irwin LW et al. (1999) The effect of humidity on the reliability of a surface micromachined microengine, In: IEEE International Reliability Physics Symposium, San Diego, p 189–197

    Google Scholar 

  53. Tanner DM, Miller WM, Eaton WP et al. (1998) The effect of frequency on the lifetime of a surface micromachined microengine driving a load, In: IEEE International Reliability Physics Symposium, Reno, p 26–35

    Google Scholar 

  54. Hankins MG, Resnick PJ, Clews PJ, Mayer TM, Wheeler DR, Tanner DM (2003) Vapor deposition of amino-functionalized self-assembled monolayer on MEMS, In: Ramesham R, Tanner DM (eds.), Proceedings of SPIE, Reliability, Testing, and Characterization of MEMS/MOEMS II, SPIE, Bellingham, p 238–247

    Google Scholar 

  55. Mani SS, Fleming JG, Walraven JA, Sniegowski JJ et al. (2000) Effect of W coating on microengine performance, In: Proceedings of the 38th Annual International Reliability Physics Symposium, IEEE, New York, p 146–151

    Google Scholar 

  56. Liu H, Bhushan B (2004) Investigation of nanotribological and nanomechanical properties of the digital micromirror device by atomic force microscope. Vac J Sci Technol A 22:1388–1396

    Article  CAS  Google Scholar 

  57. Bhushan B, Liu H (2004) Characterization of nanomechanical and nanotribological properties of digital micromirror devices, Nanotechnology, 15:1785–1791

    Article  Google Scholar 

  58. Liu H, Bhushan B (2004) Bending and fatigue study on a nanoscale hinge by an atomic force microscope. Nanotechnology 15:1246–1251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B., Liu, H. (2007). Development of MOEMS Devices and Their Reliability Issues. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods VII. NanoScience and Technology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37321-6_9

Download citation

Publish with us

Policies and ethics