Skip to main content

Lotus Effect: Roughness-Induced Superhydrophobicity

  • Chapter
Applied Scanning Probe Methods VII

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson AV (1990) Physical Chemistry of Surfaces, Wiley, New York

    Google Scholar 

  2. Barthlott W, Neinhuis C (1997) Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces, Planta 202:1–8

    Article  CAS  Google Scholar 

  3. Bhushan B (1998) Tribology Issues and Opportunities in MEMS, Kluwer, Dordrecht

    Google Scholar 

  4. Bhushan B (1999) Principles and Applications of Tribology, Wiley, New York

    Google Scholar 

  5. Bhushan B (2002) Introduction to Tribology, Wiley, New York

    Google Scholar 

  6. Bhushan B (2004) Springer Handbook of Nanotechnology, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  7. Bhushan B (2005) Nanotribology and Nanomechanics — An Introduction, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  8. Bhushan B, Jung YC (2006) Micro-and Nanoscale Characterization of Hydrophobic and Hydrophilic Leaf Surfaces. Nanotechnology 17:2758–2772

    Article  CAS  Google Scholar 

  9. Bhushan B, Nosonovsky M (2003) Scale Effects in Friction Using Strain Gradient Plasticity and Dislocation-Assisted Sliding (Microslip), Acta Mater 51:4331–4345

    Article  CAS  Google Scholar 

  10. Bhushan B, Nosonovsky M (2004) Scale Effects inDry andWet Friction, Wear, and Interface Temperature, Nanotechnology 15:749–761

    Article  CAS  Google Scholar 

  11. Bhushan B, Israelachvili JN, Landman U (1995) Nanotribology: Friction, Wear and Lubrication at the Atomic Scale. Nature 374:607–616

    Article  CAS  Google Scholar 

  12. Bico J, Thiele U, Quéré D (2002) Wetting of Textured Surfaces. Colloids Surf A 206:41–46

    Article  CAS  Google Scholar 

  13. Burton Z, Bhushan B (2005) Hydrophobicity, Adhesion, and Friction Properties ofNanopatterned Polymers and Scale Dependence for Micro-and Nanoelectromechanical Systems. Nanoletters 5:1607–1613

    CAS  Google Scholar 

  14. Burton Z, Bhushan B (2006) Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces. Ultramicroscopy 106:709–719

    Article  CAS  Google Scholar 

  15. Cassie A, Baxter S (1944) Wettability of Porous Surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  16. Checco A, Guenoun P, Daillant J (2003) Nonlinear Dependence of the Contact Angle of Nanodroplets on Contact Line Curvatures. Phys Rev Lett 91:186101

    Article  CAS  Google Scholar 

  17. Chen Y, He B, Lee J, Patankar NA (2005) Anisotropy in the Wetting of Rough Surfaces. J Colloid Interface Sci 281:458–465

    Article  CAS  Google Scholar 

  18. Craig RG, Berry GC, Peyton FA (1960) Wetting of Poly-(Methyl Methacrylate) and Polystyrene by Water and Saliva. J Phys Chem 64:541–543

    CAS  Google Scholar 

  19. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at High Temparatures, Pergamon, Amsterdam

    Google Scholar 

  20. Erbil HY, Demirel AL, Avci Y (2003) Transformation of a Simple Plastic into a Superhydrophobic Surface. Science 299:1377–1380

    Article  CAS  Google Scholar 

  21. Eyring H (1964) Statistical Mechanics and Dynamics, Wiley, New York

    Google Scholar 

  22. Extrand CW (2002) Model for Contact Angle and Hysteresis on Rough and Ultraphobic Surfaces. Langmuir 18:7991–7999

    Article  CAS  Google Scholar 

  23. He B, Patankar NA, Lee J (2003) Multiple Equllibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces. Langmuir 19:4999–5003

    Article  CAS  Google Scholar 

  24. Herminghaus S (2000) Roughness-Induced Non-Wetting. Europhys Lett 52:165–170

    Article  Google Scholar 

  25. Israelachvili JN (1992) Intermolecular and Surface Forces, 2nd edition, Academic, London

    Google Scholar 

  26. Johnson RE, Dettre RH (1964) Contact Angle Hysteresis, In: Fowkes FM (ed) Contact Angle, Wettability, and Adhesion. Advances in Chemistry Series 43. American Chemical Society Washington DC, p 112–135

    Google Scholar 

  27. Kamusewitz H, Possart W, Paul D (1999) The Relation Between Young’s Equilibrium Contact Angle and the Hysteresis on Rough Paraffin Wax Surfaces. Colloids Surf A 156:271–279

    Article  CAS  Google Scholar 

  28. Kijlstra J, Reihs K, Klami A (2002) Roughness and Topology of Ultra-Hydrophobic surfaces. Colloids Surf A 206:521–529

    Article  CAS  Google Scholar 

  29. Lafuma A, Quéré D (2003) Superhydrophobic States. Nature Materials 2:457–460

    Article  CAS  Google Scholar 

  30. Landau L, Lifshitz E (1959) Fluid Mechanics, Pergamon, London

    Google Scholar 

  31. Marmur A (2003) Wetting on Hydrophobic Rough Surfaces: to Be Heterogeneous or Not to Be? Langmuir 19:8343–8348

    Article  CAS  Google Scholar 

  32. Marmur A (2004) The Lotus Effect: Superhydrophobicity and Metastability, Langmuir 20:3517–3519

    Article  CAS  Google Scholar 

  33. Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces. Langmuir 16:5754–5760

    Article  CAS  Google Scholar 

  34. Neinhuis C, Barthlott W (1997) Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  35. Nosonovsky M, Bhushan B (2005) Roughness Optimization for Biomimetic Superhydrophobic Surfaces. Microsyst Technol 11:535–549

    Article  CAS  Google Scholar 

  36. Nosonovsky M, Bhushan B (2006a) Stochastic Model for MetastableWetting of Roughness-Induced Superhydrophobic Surfaces. Microsyst Technol 12:231–237

    Article  CAS  Google Scholar 

  37. Nosonovsky M, Bhushan B (2006b) Wetting of Rough Three-Dimensional Superhydrophobic Surfaces. Microsyst Technol 12:273–281

    Article  CAS  Google Scholar 

  38. Nosonovsky M, Bhushan B (2006c) Hierarchical Roughness Makes Superhydrophobic States Stable. Microelectronic Engineering (in press)

    Google Scholar 

  39. Patankar NA (2003) On the Modeling of Hydrophobic Contact Angles on Rough Surfaces. Langmuir 19:1249–1253

    Article  CAS  Google Scholar 

  40. Patankar NA (2004a) Transition Between Superhydrophobic States on Rough Surfaces. Langmuir 20:7097–7102

    Article  CAS  Google Scholar 

  41. Patankar NA (2004b) Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars. Langmuir 20:8209–8213

    Article  CAS  Google Scholar 

  42. Quéré D (2004) Surface Wetting: Model Droplets. Nate Mater 3:79–80

    Article  CAS  Google Scholar 

  43. Satas D (ed) (1991) Coating Technology Handbook, Dekker, New York

    Google Scholar 

  44. Semal S, Blake TD, Geskin V, de Ruijter ML, Castelein G, De Coninck J (1999) Influence of Surface Roughness on Wetting Dynamics. Langmuir 15:8765–8770

    Article  CAS  Google Scholar 

  45. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super-Water-Repellent Surfaces Resulting from Fractal Structure. J Phys Chem 100:(1951)2–(1951)7

    Article  CAS  Google Scholar 

  46. Shuttleworth R, Bailey GLJ (1948) The Spreading of a Liquid over a Rough Solid. Discuss Faraday Soc 3:16–22

    Article  Google Scholar 

  47. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Artificial Lotus Leaf by Nanocasting. Langmuir 21:8978–8981

    Article  CAS  Google Scholar 

  48. Swain PS, Lipowsky R (1998) Contact Angles on Heterogeneous Surfaces: a New Look at Cassie’s and Wenzel’s Laws. Langmuir 14:6772–6780

    Article  CAS  Google Scholar 

  49. Tian X, Bhushan B (1996) The Micro-Meniscus Effect of a Thin Liquid Film on the Static Friction of Rough Surface Contact. J Phys D: Appl Phys 29:163–178

    Article  CAS  Google Scholar 

  50. Wagner P, Furstner R, Barthlott W, Neinhuis C (2003) Quantitative Assessment to the Structural Basis ofWater Repellency in Natural and Technical Surfaces. J Exp Bot 54:1295–1303

    Article  CAS  Google Scholar 

  51. Wenzel RN (1936) Resistance of Solid Surfaces to Wetting by Water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  52. Whitehouse DJ, Archard JF (1970) The Properties of Random Surfaces of Significance in Their Contact. Proc R Soc Lond Ser A 316:97–121

    Article  Google Scholar 

  53. Yost FG, Michael JR, Eisenmann ET (1995) Extensive Wetting due to Roughness. Acta Metall Mater 45:299–305

    Google Scholar 

  54. Zhou XB, De Hosson JTM (1995) Influence of Surface Roughness on the Wetting Angle. Acta Metall Mater 45:299–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nosonovsky, M., Bhushan, B. (2007). Lotus Effect: Roughness-Induced Superhydrophobicity. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods VII. NanoScience and Technology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37321-6_1

Download citation

Publish with us

Policies and ethics