Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 345))

  • 171 Accesses

Abstract

It is a challenging task to accurately describe complicated biological tissues and bioluminescent sources in bioluminescent imaging simulation. To a certain extent, complicated anatomical structures and bioluminescent sources can be approximately modeled by combining a sufficient large number of geometric building blocks with Boolean operators. However, those models are too simple to describe the local features and fine changes in 2D/3D irregular contours. Therefore, interactive graphic editing tools are developed to interactively correct or improve the initial models of anatomical structures or bioluminescent sources and to efficiently model each part of the bioluminescent simulation environment. With initial models composed of geometric building blocks, interactive spline mode is applied to conveniently perform dragging and compressing operations on 2D/3D local surface of biological tissues and bioluminescent sources inside the region/volume of interest. Several applications of the interactive graphic editing tools will be presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weissleder, R., Mahmood, U.: Molecular Imaging. Radiology 219 (2001) 316–333

    Google Scholar 

  2. Blasberg, R.G., Gelovani-Tjuvajev, J.: In Vivo Molecular-Genetic Imaging. Journal of Cellular Biochemistry, 87 (2002) 172–183

    Article  Google Scholar 

  3. Briesmeister, J. F.: MCNP-A General Monte Carlo N-Particle Transport Code, Version 4C. User’s Manual LA-13709-M, Los Alamos National Laboratory, (2000)

    Google Scholar 

  4. Bielajew, A. F., Hirayama, H., Nelson, W. R., Rogens, D. W. O.: History, Overview and Recent Improvements of EGS4. National Research Council of Canada Report PIRS-0436 (1994)

    Google Scholar 

  5. Wang, L. H., Jacques, S. L., Zheng, L. Q.: MCML-Monte Carlo Modeling of Light Transport in Multi-Layered Tissues. Computer Methods and Programs in Biomedicine, 47 (1995) 131–146

    Article  Google Scholar 

  6. Lambda Research Corporation. User’s Manual (Release 3.0) of TracePro (Software for Opto-Mechanical Modeling). Lambda Research Corporation, (2002)

    Google Scholar 

  7. Li, H., Tian, J., Zhu, F. P., Cong, W. X., Wang, L. H., Hoffman, E. A., Wang, G.: A Mouse Optical Simulation Environment (MOSE) to Investigate Bioluminescent Phenomena in the Living Mouse with the Monte Carlo Method. Academic Radiology, 11 (2004) 1029–1038

    Article  MATH  Google Scholar 

  8. Barr, A. H.: Superquadrics and Angle Preserving Transformation. IEEE Computer Graphic and Application, 1 (1981) 11–23

    Google Scholar 

  9. Barr, A. H.: Global and Local Deformations of Solid Primitives. Cmputer Graphic 18 (1984) 21–30

    Google Scholar 

  10. Sinnott, J., Howard, T.: SQUIDS: Interactive Deformation of Superquadrics for Model Matching In Virtual Environment. In: Lundervold, D. (ed.): Proceedings of the Eurographics UK Conference. Eurographics UK Chapter, Abingdon (2000) 73–80

    Google Scholar 

  11. Zhu, J. H., Zhao, S. Y., Ye, Y. B., Wang, G.: Computed Tomography Simulation with Superquadrics. Medical Physics, 32 (2005) 3136–3143

    Article  Google Scholar 

  12. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic Press, New York (1990)

    Google Scholar 

  13. Kang, Y., Engelke, K., Kalender, W. A.: Interactive 3D Editing Tools for Image Segmentation. Medical Image Analysis, 8 (2004) 35–46

    Article  MATH  Google Scholar 

  14. Zhao, M., Tian, J., Zhu, X., Xue, J. Cheng, Z. L., Zhao, H.: Design and Implementation of a C++ Toolkit for Integrated Medical Image Processing and Analyzing. In: Robert, L., Galloway, J. (eds.): Visualization, Image-Guided Procedures and Display. SPIE Proceedings, Vol. 5367. SPIE Press, (2004) 39–47

    Google Scholar 

  15. Zhu, F. P., Tian, J.: Modified Fast Marching and Level Set Method for Medical Image Segmentation. Journal of X-Ray Science and Technology, 11 (2003) 193–204

    Google Scholar 

  16. Lin, Y., Tian, J., He, H. G.: Image Segmentation Via Fuzzy Object Extraction and Edge Detection and Its Medical Application. Journal of X-Ray Science and Technology, 10 (2001) 95–106

    MATH  Google Scholar 

  17. Zhao, M., Tian, J., Li, G. M., He, H.G.: A Practical Surface Reconstruction Algorithm for Very Large Medical Datasets. In: Lu, H.Q., Zhang, T.X. (eds.): Third International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR). SPIE Proceedings, Vol. 5286. SPIE Press, (2003) 243–247

    Google Scholar 

  18. Zhao, M., Tian, J., He, H.G., Li, G.M.: Points Based Reconstruction and Rendering of 3D Shapes from Large Volume Dataset. In: Robert, L., Galloway, J. (eds.): Visualization, Image-Guided Procedures and Display. SPIE Proceedings, Vol. 5029. SPIE Press, (2003) 18–26

    Google Scholar 

  19. Garland, M., Heckbert, P. S.: Surface Simplification Using Quadric Error Metric. In: Whitted, T. (ed.): SIGGRAPH97. SIGGRAPH Proceeding Series. ACM Press, New York (1997) 209–216

    Google Scholar 

  20. Li, G. M., Tian, J., Zhao, M., He, H.G.: A New Mesh Simplification Algorithm Combining Half-Edge Data Structures with Modified Quadric Error Metric. In: Kasturi, R., Laurendeau, D., Suen C. (eds.): Proceedings of the 16th International Conferences on Pattern Recognition. ICPR Proceedings. IEEE Computer Society Press, Los Alamitos (2002) 659–662

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, H., Tian, J., Luo, J., Lv, Y. (2006). Graphic Editing Tools in Bioluminescent Imaging Simulation. In: Huang, DS., Li, K., Irwin, G.W. (eds) Intelligent Computing in Signal Processing and Pattern Recognition. Lecture Notes in Control and Information Sciences, vol 345. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37258-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37258-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37257-8

  • Online ISBN: 978-3-540-37258-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics