High-Resolution Microscopy

  • Akira Tonomura
Part of the Springer Series in Optical Sciences book series (SSOS, volume 70)


The original objective of holography was to improve the resolution of an electron microscope. Since an aberration-free system cannot be achieved by the combination of concave and convex lenses in the electron case because of the lack of a concave electron lens, the resolution is determined by the aberrations of the objective lens and not by a fundamental limit of the electron wavelength. In fact, it was theoretically verified by Scherzer [8.1] that an axially-symmetric magnetic field can function only as a convex lens for an electron beam.


Spatial Frequency Interference Fringe Lattice Image Lattice Fringe Diffract Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 8.1
    O. Scherzer: U ber einige Fehler von elektronen Linsen. Z. Phys. 2, 593 (1936)ADSGoogle Scholar
  2. 8.2
    F. Zernike: Phase contrast, a new method for the observation of transparent objects. Physica 9, 686 (1942)ADSCrossRefGoogle Scholar
  3. 8.3
    F. Zernike: Phase contrast, a new method for the observation of transparent objects, Part II. Physica 9, 974 (1942)ADSCrossRefGoogle Scholar
  4. 8.4
    O. Scherzer: The theoretical resolution limit of the electron microscope. J. Appt. Phys. 20, 20 (1949)Google Scholar
  5. 8.5
    K.-J. Hanszen: The optical transfer theory of the electron microscope: Fundamental principles and applications. In Advanced Optical Electron Microscopy, ed. by R. Barer, V.E. Cosslett (Academic, London 1971 ) Vol. 4, pp. 1–84Google Scholar
  6. 8.6
    A. Tonomura, T. Matsuda, J. Endo: Spherical-aberration correction of electron lens by holography. Jpn. J. Appt. Phys. 18, 1373 (1979)ADSCrossRefGoogle Scholar
  7. 8.7
    S. Ino: Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum. J. Phys. Soc. Jpn. 21, 346 (1966)ADSCrossRefGoogle Scholar
  8. 8.8
    K. Mihama, Y. Yasuda: Initial stage of epitaxial growth of evaporated gold films on sodium chloride. J. Phys. Soc. Jpn. 21, 1161 (1966)Google Scholar
  9. 8.9
    H. Lichte: Electron holography approaching atomic resolution. Ultramicroscopy 20, 293 (1986)CrossRefGoogle Scholar
  10. 8.10
    T. Kawasaki, Q. Ru, T. Matsuda, Y. Bando, A. Tonomura: High resolution holography observation of H-Nb2 05. Jpn. J. Appl. Phys. 30, L1830 (1991)ADSCrossRefGoogle Scholar
  11. 8.11
    A. Orchowski, W.D. Rau, H. Lichte: Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399 (1995)ADSCrossRefGoogle Scholar
  12. 8.12
    G. Lang, M. Lehmann, D.J. Smith, M.R. McCartney, H. Lichte: High resolution electron holography of CdTe and ZnTe. Proc. MRS’97 ( Fall 1998 Meeting) to be publishedGoogle Scholar
  13. 8.13
    W. Coene, G. Janssen, M.O. de Beeck, D.V. Dyck: Phase retieval through focus variation for ultra-resolution in field-emission transmission electron microscopy: Phys. Rev. Lett. 69, 3743 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Akira Tonomura
    • 1
  1. 1.Advanced Research LaboratoryHitachi, Ltd.SaitamaJapan

Personalised recommendations