Electron-Holographic Interferometry

  • Akira Tonomura
Part of the Springer Series in Optical Sciences book series (SSOS, volume 70)


When holography is employed, the phase distribution of an electron beam transmitted through or reflected from a sample can be displayed as an interference micrograph. Although an interference micrograph can also be obtained without recourse to holography if we use an electron microscope equipped with an electron biprism (Sect.3.2), electron holography allows contour maps to be observed and the phase to be measured with a precision as high as 2π/100. The development of electron-holographic interferometry allows us to see objects that were not visible when using conventional electron microscopes in which only the intensity of an electron beam is observed.


Interference Fringe Magnetic Line Cobalt Particle Magnetic Domain Structure Electron Holography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    I. Sunagawa: Step height of spirals on natural hematite crystals. Am. Mineral. 46, 1216 (1961)Google Scholar
  2. 7.2
    J. Endo, T. Kawasaki, T. Matsuda, N. Osakabe, A. Tonomura: Sensitivity improvement in electron holographic interferometry. Proc. 13th Intl Commission for Optics. Sapporo, 1984, ed. by H. Ohzu (Organizing Committee of ICO-13, Sapporo 1984 ) pp. 480–481Google Scholar
  3. 7.3
    A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakabe: Sensitivityenhanced electron-holographic interferometry and thickness-measurement applications at atomic scale. Phys. Rev. Lett. 54, 60 (1985)ADSCrossRefGoogle Scholar
  4. 7.4
    S. lijima, T. Ichihashi: Single shell carbon nanotubes of one nanometer diameter. Nature 363, 603 (17 July 1993 )Google Scholar
  5. 7.5
    Q. Ru: Phase-shifting techniques in electron holography, in Proc. Intl Workshop on Electron Holography, Knoxville, TN, ed. by A. Tonomura, L.F. Allard, G. Pozzi, D.C. Joy, Y.A. Ono(Elsevier, Amsterdam 1995)p.69Google Scholar
  6. 7.6
    X. Lin, V. Ravikumar, R.P. Rodrigues, N. Wilcox, V.P. Dravid: Electron holography in material science, in Proc. Intl Workshop on Electron Holography, Knoxville, TN, ed. by A. Tonomura, L.F. Allard, G. Pozzi, D.C. Joy, Y.A. Ono (Elsevier, Amsterdam 1995 ) p. 209Google Scholar
  7. 7.7
    L.F. Allard, E. Völkl, S. Subramoney, R.S. Ruoff: Electron holography applied to the study of fullerence materials, in Proc. Intl Workshop on Electron Holography ( Knoxville, TN ), ed. by A. Tonomura, L.F. Allard, G. Pozzi, D.C. Joy, Y.A. Ono (Elsevier, Amsterdam 1995 ) p. 219Google Scholar
  8. 7.8
    G. Lulli, P.G. Merli, A. Migliori, G. Mateucci, M. Stanghellini: Characterization of defects produced during self-annealing implantation of As in silicon. J. Appl. Phys. 68, 2708 (1990)ADSCrossRefGoogle Scholar
  9. 7.9
    A.K. Datye, D.S. Kalakkad, E. Völkl, L.F. Allard: Electron holography of heterogeneous catalysis, in Proc. Intl Workshop on Electron Holography ( Knoxville, TN ), ed. by A. Tonomura, L.F. Allard, G. Pozzi, D.C. Joy, Y.A. Ono (Elsevier, Amsterdam 1995 ) p. 199Google Scholar
  10. 7.10
    T. Kawasaki, J. Endo, T. Matsuda, N. Osakabe, A. Tonomura: Application of holographic interference electron microscopy to the observation of biological specimens. J. Electron Microsc. 35, 211 (1986)Google Scholar
  11. 7.11
    H.L. Cox Jr., R.A. Bonham: Elastic electron scattering amplitudes for neutral atoms calculated using the partial wave method at 10, 40, 70 and 100 kV for Z = 1 to Z = 54 J. Chem. Phys. 47, 2599 (1967)ADSCrossRefGoogle Scholar
  12. 7.12
    N. Osakabe, J. Endo, T. Matsuda, A. Tonomura, A. Fukuhara: Observation of surface undulation due to single-atomic shear of a dislocation by reflection-electron holography. Phys. Rev. Lett. 62, 2969 (1989)ADSCrossRefGoogle Scholar
  13. 7.13
    P.G. Merli, G.F. Missiroli, G. Pozzi: p-n junction observations by interference electron microscopy. J. de Microscopie 21, 11 (1974)Google Scholar
  14. 7.14
    Yu.A. Kulyupin, S.A. Nepijko, N.N. Sedov, V.G. Shamonya: Use of interference microscopy to measure electric field distributions. Optik 52, 101 (1979)Google Scholar
  15. 7.15
    S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi: Electron holographic observation of the electrostatic field associated with thin reverse-biased p-n junctions. Phys. Rev. Lett. 55, 2196 (1985)ADSCrossRefGoogle Scholar
  16. 7.16
    B. Lau, G. Pozzi: Off axis electron micro-holography of magnetic domain walls. Optik 51, 287 (1978)Google Scholar
  17. 7.17
    H. Wahl, B. Lau: Theoretische Analyse des Verfahrens, die Feldvertailung in dünnen magnetischen Schichten durch lichtholographische Auswertung elektroneninterferenzmikroskopischer Aufnahmen zu veranschaulichen. Optik 54, 27 (1979)Google Scholar
  18. 7.18
    A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Direct observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44, 1430 (1980)ADSCrossRefGoogle Scholar
  19. 7.19
    T. Matsuda, A. Tonomura, R. Suzuki, J. Endo, N. Osakabe, H. Umezaki, H. Tanabe, Y. Sugita, H. Fujiwara: Observation of microscopic distribution of magnetic field by electron holography. J. Appl. Phys. 53, 544 (1982)CrossRefGoogle Scholar
  20. 7.20
    A. Fukuhara, K. Shinagawa, A. Tonomura, H. Fujiwara: Electron holography and magnetic specimens. Phys. Rev. B27, 1839 (1983)ADSCrossRefGoogle Scholar
  21. 7.21
    H. Koch, H. Lübbig (eds.): Superconducting Devices and Their Applications, Springer Proc. Phys., Vol. 64 ( Springer, Berlin, Heidelberg 1992 )Google Scholar
  22. 7.22
    M.S. Cohen: Wave-optical aspects of Lorentz microscopy. J. Appl. Phys. 38, 4966 (1967)ADSCrossRefGoogle Scholar
  23. 7.23
    A. Tonomura: The electron interference method for magnetization measurement of thin films. Jpn. J. Appl. Phys. 11, 493 (1972)ADSCrossRefGoogle Scholar
  24. 7.24
    G. Pozzi, G.F. Missiroli: Interference electron microscopy of magnetic domains. J. Microscopie 18, 103 (1973)Google Scholar
  25. 7.25
    A. Tonomura, T. Matsuda, H. Tanabe, N. Osakabe, J. Endo. A. Fukuhara, K. Shinagawa, H. Fujiwara: Electron holography technique for investigating thin ferromagnetic films. Phys. Rev. B25, 6799 (1982)ADSCrossRefGoogle Scholar
  26. 7.26
    E.E. Huber, D.O. Smith, J.B. Goodenough: Domain-wall structure in permalloy films. J. Appl. Phys. 29, 294 (1958)ADSCrossRefGoogle Scholar
  27. 7.27
    T. Arii, S. Yatsuya, N. Wada, K. Mihama: Ferromagnetic domains in F.C.C. cobalt fine particles prepared by gas-evaporation technique. Proc. 5th Intl Conf. High Voltage Electrton Microscopy (Kyoto 1977) (Jpn. Soc. Electron Microscopy, Kyoto 1977 ) pp. 203–206Google Scholar
  28. 7.28
    N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tonomura: Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746 (1983)ADSCrossRefGoogle Scholar
  29. 7.29
    K. Yoshida, T. Okuwaki, N. Osakabe, H. Tanabe, Y. Horiuchi, T. Matsuda, K. Shinagawa, A. Tonomura, H. Fujiwara: Observation of recorded magnetization patterns by electron holography. IEEE Trans. Magn. MAG 19, 1600 (1983)ADSCrossRefGoogle Scholar
  30. 7.30
    S. Iwasaki, T. Nakamura: An analysis for the magnetization mode for high density magnetic recording, IEEE Trans. MAG 13, 1272 (1977)ADSCrossRefGoogle Scholar
  31. 7.31
    A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Holographic interference electron microscopy for determining specimen magnetic structure and thickness distribution. Phys. Rev. B 34, 3397 (1986)ADSCrossRefGoogle Scholar
  32. 7.32
    G. Lai, T. Hirayama, K. Ishizuka, T. Tanji, A. Tonomura: Three-dimensional reconstruction of electrical-potential distribution in electron-holographic interferometry. Appl. Opt. 33, 829 (1994)ADSCrossRefGoogle Scholar
  33. 7.33
    G. Lai, T. Hirayama, K. Ishizuka, T. Tanji, Tonomura: Three-dimensional reconstruction of electric-potential distribution in electron-holographic interferometry. Appl. Opt. 33, 829 (1994)ADSCrossRefGoogle Scholar
  34. 7.34
    U. Essmann, H. Träuble: The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24, 526 (1967)ADSCrossRefGoogle Scholar
  35. 7.35
    J. Mannhart, J. Bosch, R.P. Huebener: Elementary pinning forces measured using low temperature scanning electron microscopy. Phys. Lett. A 122, 439 (1987)ADSCrossRefGoogle Scholar
  36. 7.36
    H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles, Jr., J.V. Waszczak: Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214 (1989)ADSCrossRefGoogle Scholar
  37. 7.37
    A.M. Chang, H.D. Hallen, L. Harriott, H.F. Hess, H.L. Kao, J. Kwo, R.E. Müller, R. Wolfe, J. van der Ziel, T.Y. Chang: Scanning Hall probe microscopy. Appl. Phys. Lett. 61, 1974 (1992)ADSCrossRefGoogle Scholar
  38. 7.38
    A. Oral, S.J. Bending: Real-time scanning Hall probe microscopy. Appl. Phys. Lett. 69, 1324 (1996)ADSCrossRefGoogle Scholar
  39. 7.39
    L.N. Vu, M.S. Wistrom, D.J. Van Harlingen: Imaging of magnetic vortices in superconducting networks and clusters by scanning SQUID microscopy. Appl. Phys. Lett. 63, 1693 (1993)ADSCrossRefGoogle Scholar
  40. 7.40
    A. Moser, H.J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, A. Baratoff, H.-J. Güntherodt: Observation of single vortices condensed into a vortex-glass phase by magnetic force microscopy: Phys. Rev. Lett. 74, 1847 (1995)ADSCrossRefGoogle Scholar
  41. 7.41
    T. Matsuda, H. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama, J. Endo, N. Osakabe, A. Tonomura, R. Aoki: Magnetic field observation of a single flux quantum by electron-holographic interferometry. Phys. Rev. Lett. 62, 2519 (1989)ADSCrossRefGoogle Scholar
  42. 7.42
    S. Hasegawa, T. Matsuda, J. Endo, N. Osakabe, M. Igarashi, T. Kobayashi, M. Naito, A. Tonomura, R. Aoki: Magnetic-flux quanta in superconducting thin films observed by electron holography and digital phase analysis. Phys. Rev. B 43, 7631 (1991)ADSCrossRefGoogle Scholar
  43. 7.43
    J.M. Kosterlitz, D.D.J. Thouless: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. 6, 1181 (1973)Google Scholar
  44. 7.44
    B.I. Halperin, D.R. Nelson: Resistive transition in superconducting films. J. Low Temp. Phys. 36, 599 (1979)ADSCrossRefGoogle Scholar
  45. 7.45
    T. Matsuda, A. Fukuhara, T. Yoshida, S. Hasegawa, A. Tonomura, Q. Ru: Computer reconstruction from electron holograms and observation of fluxon dynamics. Phys. Rev. Lett. 66, 457 (1991)ADSCrossRefGoogle Scholar
  46. 7.46
    Q. Ru, T. Matsuda, A. Fukuhara, A. Tonomura: Digital extraction of the magnetic-flux distribution from an electron interferogram. J. Opt. Soc. Am. 8, 1739 (1991)ADSCrossRefGoogle Scholar
  47. 7.47
    T. Yoshida, T. Matsuda, A. Tonomura: Electron holography observation of flux-line dynamics, Proc. 50th Meeting of Electron Microscopy Society of America, Boston 1992, ed. by G.W. Bailey, J. Bentley, J.A. Small ( San Francisco Press, San Francisco, 1992 ) pp. 68–69Google Scholar
  48. 7.48
    G.S. Park, C.E. Cunningham, B. Cabrera, M.E. Huber: Vortex pinning force ma superconducting niobium strip. Phys. Rev. Lett. 68, 1920 (1992)ADSCrossRefGoogle Scholar
  49. 7.49
    O.B. Hyun, D.K. Finnemore, L. Scharztkopf, J.R. Clem: Elementary pinning force fora superconducting vortex. Phys. Rev. Lett. 58, 599 (1987)ADSCrossRefGoogle Scholar
  50. 7.50
    H. Yoshioka: On the electron diffraction by flux lines. J. Phys. Soc. Jpn. 21, 948 (1960)ADSCrossRefGoogle Scholar
  51. 7.51
    M.J. Goringe, J.P. Jakubovics: Electron diffraction from periodic magnetic fields. Phil. Mag. 15, 393 (1967)ADSCrossRefGoogle Scholar
  52. 7.52
    J.P. Guigay, A. Bourret: Calcul des franges de defocalisation d’une ligne de vortex, en microscopie electronique. C.R. Acad. Sci. (Paris) 264, 1389 (1967)Google Scholar
  53. 7.53
    D. Wohlleben: Diffraction effects in Lorentz microscopy. J. Appl. Phys. 38, 3341 (1967)ADSCrossRefGoogle Scholar
  54. 7.54
    C. Colliex, B. Jouffrey, M. Kiernan: Sur les possibilities d’observation de sligne de vortex en microscopie electronique par transmission. Acta Cryst. A 24, 692 (1968)CrossRefGoogle Scholar
  55. 7.55
    C. Capiluppi, G. Pozzi, U. Valdrè: On the possibility of observing fuxons by transmission electron microscopy. Phil. Mag. 26, 865 (1972)ADSCrossRefGoogle Scholar
  56. 7.56
    A. Migliori, G. Pozzi: Computer simulation of electron holographic contour maps of superconducting flux lines. Ultramicroscopy 41, 169 (1992)CrossRefGoogle Scholar
  57. 7.57
    A. Migliori, G. Pozzi, A. Tonomura: Computer simulation of electron holographic contour maps of superconducting flux lines II. The case of tilted specimen. Ultramicroscopy 49, 87 (1993)CrossRefGoogle Scholar
  58. 7.58
    K. Harada, T. Matsuda, J. Bonevich, M. Igarashi, S. Kondo, G. Pozzi, U. Kawabe, A. Tonomura: Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 360, 51(5 November 1992 )Google Scholar
  59. 7.59
    J.E. Bonevich, K. Harada, T. Matsuda, H. Kasai, T. Yoshida, G. Pozzi, A. Tono-mura: Electron holography observation of vortex lattices in a superconductor. Phys. Rev. Lett. 70, 2952 (1993)ADSCrossRefGoogle Scholar
  60. 7.60
    T. Matsuda, K. Harada, H. Kasai, O. Kamimura, A. Tonomura: Observation of dynamic interaction of vortices with pinning centers by Lorentz microscopy. Science 271, 1393 (8 March 1996 )Google Scholar
  61. 7.61
    G.W. Crabtree, D. R Nelson: Vortex physics in high-temperature superconductors. Phys. Today 50, 38 (April 1997)CrossRefGoogle Scholar
  62. 7.62
    C. Reichhardt, J. Groth, C.J. Olson, S.B. Field, F. Nori: Spatiotemporal dynamics and plastic flow of vortices in superconductors with periodic arrays of pinning sites. Phys. Rev. B 54, 16108 (1996)ADSCrossRefGoogle Scholar
  63. 7.63
    C. Reichahrdt, C.J. Olson, F. Nori: States in Dynamic phases of vortices in superconductors with periodic pinning arrays. Phys. Rev. Lett. 78, 2648 (1997)ADSCrossRefGoogle Scholar
  64. 7.64
    K. Harada, O. Kamimura, H. Kasai, T. Mastuda, A. Tonomura: Direct observation of vortex dynamics in superconducting films with regular arrays. Science 274, 1167 (15 November 1996 )Google Scholar
  65. 7.65
    K. Harada, H. Kasai, T. Matsuda, M. Yamasaki, A. Tonomura: Direct observation of interaction of vortices and antivortices in a superconductor by Lorentz microscopy. J. Electron Microsc. 46, 227 (1997)CrossRefGoogle Scholar
  66. 7.66
    K. Harada, H. Kasai, J.E. Bonevich, T. Yoshida, A. Tonomura: Vortex configuration and dynamics in Bit Sri.8 CaCuOX thin film by Lorentz microscopy. Phys. Rev. Lett. 71, 3371 (1993)Google Scholar
  67. 7.67
    For example, see D.J. Bishop, P.L. Gammel, D.A. Huse, C.A. Murray: Magnetic flux-line lattices and vortices in the copper oxide superconductors. Science 255, 165 (10 January 1992 )Google Scholar
  68. 7.68
    R.N. Kleiman, P.L. Gammel, L.F. Schneemeyer, J.V. Waszczak, D.J. Bishop: Kleiman et al. Reply. Phys. Rev. Lett. 62, 2331 (1989)ADSCrossRefGoogle Scholar
  69. 7.69
    A. Tonomura, H. Kasai, O. Kamimura, T. Matsuda, K. Harada, J. Shimoyama, K. Kisho, K. Kitazawa: Motion of vortices in superconductors. Nature 397, 308 (28 January 1999 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Akira Tonomura
    • 1
  1. 1.Advanced Research LaboratoryHitachi, Ltd.SaitamaJapan

Personalised recommendations