Advertisement

Aharonov-Bohm Effect: The Principle Behind the Interaction of Electrons with Electromagnetic Fields

  • Akira Tonomura
Chapter
  • 488 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 70)

Abstract

In 1959, Aharonov and Bohm presented a paper entitled “Significance of electromagnetic potentials in quantum theory” [6.1]. Its content can roughly be summarized as follows: In classical electrodynamics, potentials are merely a convenient mathematical tool for calculations concerning electromagnetic fields. The fundamental equations can always be formulated using these fields. However, in quantum mechanics, potentials cannot be eliminated from the Schrödinger equation and consequently seem to have physical significance. Aharonov and Bohm went beyond this conjecture and proposed actual electron-interference experiments. These experiments were intended to clarify how potentials affect electrons passing through field-free regions. The phenomenon these researchers described came to be called the Aharonov-Bohm (AB) effect in their honor.

Keywords

Magnetic Flux Vector Potential Gauge Field Parallel Transport Electron Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    Y. Aharonov, D. Bohm: Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115, 485 (1959)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 6.2
    M. Peshkin, A. Tonomura: The Aharonov-Bohm Effect, Lect. Notes Phys., Vol. 340 ( Springer, Berlin, Heidelberg 1989 )Google Scholar
  3. 6.3
    T.T. Wu, C.N. Yang: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845 (1975)MathSciNetADSCrossRefGoogle Scholar
  4. 6.4
    C.N. Yang: Vector potential, gauge field and connection on a fiber bundle, in Quantum Coherence and Decoherence, Proc. 5th Int’l Symp. Foundations of Quantum Mechanics in Light of New Technologies, Tokyo 1995 ( Elsevier, Amsterdam 1996 ) pp. 307–314Google Scholar
  5. 6.5
    J.C. Maxwell: A Treatise on Electricity and Magnetism (Dover, New York 1954) Vol.2, Article 540, p. 187Google Scholar
  6. 6.6
    J.C. Maxwell: A Treatise on Electricity and Magnetism (Dover, New York 1954) Vol.2, Article 590, p. 232Google Scholar
  7. 6.7
    C.N. Yang: Hermann Weyl’s Contribution to Physics. Hermann Weyl 1885–1985, ed. by K. Chandrasekharan ( Springer, Berlin, Heidelberg 1986 ) pp. 7–21Google Scholar
  8. 6.8
    C.N. Yang, R.L. Mills: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191 (1956)Google Scholar
  9. 6.9
    R. Utiyama: Invariant theoretical interpretation of interaction. Phys. Rev. 101, 1597 (1956)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 6.10
    S. Weinberg: A model of leptons. Phys. Rev. Lett. 19, 1264 (1967)ADSCrossRefGoogle Scholar
  11. 6.11
    A. Salam: Weak and electromagnetic interactions. Proc. 8th Intl Symp. on Elementary Particle Theory, ed. by N. Svartholm ( Almqvist and Wilksells, Stockholm 1968 ) pp. 367–377Google Scholar
  12. 6.12
    H.J. Bernstein, A.V. Philips: Fiber bundles and quantum theory. Sci. Am. 245, 95 (July 1981)CrossRefGoogle Scholar
  13. 6.13
    R.G. Chambers: Shift of an electron interference pattern by enclosed magnetic flux. Phys. Rev. Lett. 5, 3 (1960)ADSCrossRefGoogle Scholar
  14. 6.14
    H.A. Fowler, L. Marton, J.A. Simpson, J.A. Suddeth: Electron interferometer studies of iron whiskers. J. Appl. Phys. 32, 1153 (1961)ADSCrossRefGoogle Scholar
  15. 6.15
    H. Boersch, H. Hamisch, K. Grohmann: Experimenteller Nachweis der Phasenverschiebung von Elektronenwellen durch das magnetische Vektorpotential. Z. Phys. 169, 263 (1962)ADSCrossRefGoogle Scholar
  16. 6.16
    G. Möllenstedt, W. Bayh: Kontinuierliche Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential eines Solenoids. Phys. Bl. 18, 299 (1962)CrossRefGoogle Scholar
  17. 6.17
    P. Bocchieri, A. Loinger: Nonexistence of the Aharonov-Bohm effect. Nuovo Cimento A 47, 475 (1978)MathSciNetADSCrossRefGoogle Scholar
  18. 6.18
    P. Bocchieri, A. Loinger, G. Siragusa: Nonexistence of the Aharonov-Bohm effect. II Discussion of the Experiments. Nuovo Cimento A 51, 1 (1979)Google Scholar
  19. 6.19
    D. Home, S. Sengupta: A critical reexamination of the Aharonov-Bohm effect. Am. J. Phys. 51, 942 (1983)ADSCrossRefGoogle Scholar
  20. 6.20
    S.M. Roy: Condition for nonexistence of Aharonov-Bohm effect. Phys. Rev. Lett. 44, 111 (1980)Google Scholar
  21. 6.21
    W. Ehrenberg, R.W. Siday: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. (London) B 62, 8 (1949)ADSzbMATHCrossRefGoogle Scholar
  22. 6.22
    D. Bohm, B.J. Hiley: On the Aharonov-Bohm effect. Nuovo Cimento A 52, 295 (1979)MathSciNetADSCrossRefGoogle Scholar
  23. 6.23
    T. Takabayasi: Hydrodynamical formalism of quantum mechanics and AharonovBohm effect. Prog. Theor. Phys. 69, 1323 (1983)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 6.24
    P. Bocchieri, A. Loinger, G. Siragusa: The role of the electromagnetic potentials in quantum mechanics. The Marton experiment. Nuovo Cimento A 56, 55 (1980)MathSciNetADSCrossRefGoogle Scholar
  25. 6.25
    C.G. Kuper: Electromagnetic potential in quantum mechanics: a proposed test of the Aharonov-Bohm effect. Phys. Lett. A 79, 413 (1980)ADSCrossRefGoogle Scholar
  26. 6.26
    V.L. Lyuboshitz, Ya. A. Smorodinskii: The Aharonov-Bohm effect in a toroidal solenoid. Sov. Phys. -JETP 48, 19 (1978)ADSGoogle Scholar
  27. 6.27
    A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sugita, H. Fujiwara: Observation of the Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443 (1982)ADSCrossRefGoogle Scholar
  28. 6.28
    A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Direct observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44, 1430 (1980)ADSCrossRefGoogle Scholar
  29. 6.29
    A. Fukuhara, K. Shinagawa, A. Tonomura, H. Fujiwara: Electron holography and magnetic specimens. Phys. Rev. B27, 1839 (1983)ADSCrossRefGoogle Scholar
  30. 6.30
    P. Bocchieri, A. Loinger, G. Siragusa: Remarks on “Observation of Aharonov Bohm effect by electron holography”. Lett. Nuovo Cimento 35, 370 (1982)CrossRefGoogle Scholar
  31. 6.31
    H. Miyazawa: Quantum mechanics in a multiply-connected region. Proc. 10th Hawaii Conf. High Energy Physics, Hawaii (University of Hawaii 1985 ) pp. 441–458Google Scholar
  32. 6.32
    E. Schrödinger: Die Mehrdeutigkeit der Wellenfunktion. Ann. Phys. 32, 49 (1938)zbMATHCrossRefGoogle Scholar
  33. 6.33
    W. Pauli: Uber ein Kriterium fü r Ein-oder Zweiwertigkeit der Eigenfunktionen in der Wellenmechanik. HeIv. Phys. Acta 12, 147 (1939)Google Scholar
  34. 6.34
    A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, H. Yamada: Evidence for the Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792 (1986)ADSCrossRefGoogle Scholar
  35. 6.35
    A. Tonomura, S. Yano, N. Osakabe, T. Matsuda, H. Yamada, T. Kawasaki, J. Endo: Proof of the Aharonov-Bohm effect with completely shielded magnetic field. Proc. 2nd Int’I Symp. Foundations of Quantum Mechanics, Tokyo 1986, ed. by M. Namiki, Y. Ohnuki, Y. Murayama, S. Nomura ( Phys. Soc. Jpn., Tokyo 1987 ) pp. 97–105Google Scholar
  36. 6.36
    N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, H. Yamada: Experimental confirmation of the Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor. Phys. Rev. A 34, 815 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Akira Tonomura
    • 1
  1. 1.Advanced Research LaboratoryHitachi, Ltd.SaitamaJapan

Personalised recommendations