Historical Development of Electron Holography

  • Akira Tonomura
Part of the Springer Series in Optical Sciences book series (SSOS, volume 70)


The original approach that Danis Gabor took in developing electron holography was an in-line projection method [4.1] in which an object is illuminated with a divergent spherical wave from a point focus close to the object (Fig.4.1). This kind of hologram is a highly magnified projected interference pattern between the object and the transmitted waves. No lenses are necessary, but this method requires a very small electron point focus. The diameter of the focus determines the resolution of the reconstructed image.


Reconstructed Image Zone Plate Cerium Dioxide Magnesium Oxide Particle Illumination Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    D. Gabor: Microscopy by reconstructed wavefronts. Proc. Roy. Soc. London A 197, 454 (1949)ADSzbMATHCrossRefGoogle Scholar
  2. 4.2
    M. E. Haine, J. Dyson: A modification to Gabor’s proposed diffraction microscope. Nature 166, 315 (19 August 1950 )Google Scholar
  3. 4.3
    H.-W. Fink, W. Stocker, H. Schmid: Holography with low energy electrons. Phys. Rev. Lett. 65, 1204 (1990)ADSCrossRefGoogle Scholar
  4. 4.4
    H.-W. Fink, H. Schmid: Atomic resolution in lensless low-energy electron holography. Phys. Rev. Lett. 67, 1543 (1991)ADSCrossRefGoogle Scholar
  5. 4.5
    H. Boersch: Fresnelsche Beugungserscheinungen im Ü bermikroskop. Naturwiss. 28, 711 (1940)Google Scholar
  6. 4.6
    G.I. Rogers: Experiments in diffraction microscopy. Proc. Roy. Soc. Edinburgh A 63 193 (1950/51)Google Scholar
  7. 4.7
    A.V. Baez: A study in diffraction microscopy with special reference to X-rays. J. Opt. Soc. Am. 42, 756 (1952)ADSCrossRefGoogle Scholar
  8. 4.8
    P. Kirkpatrick, H. M. El-Sum: Image formation by reconstructed wavefronts I. Physical principles and methods of refinements. J. Opt. Soc. Am. 46, 825 (1956)ADSCrossRefGoogle Scholar
  9. 4.9
    M.E. Haine, T. Mulvey: The formation of the diffraction image with electrons in the Gabor diffraction microscope. J. Opt. Soc. Am. 42, 763 (1952)ADSCrossRefGoogle Scholar
  10. 4.10
    T. Hibi: Pointed filaments I. Its production and its application. J. Electron Microsc. 4, 10 (1956)Google Scholar
  11. 4.11
    E.N. Leith, J. Upatnieks: Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962)ADSCrossRefGoogle Scholar
  12. 4.12
    J.B. DeVelis, G.B. Parrent, B.J. Thompson: Image reconstruction with Fraunhofer holograms. J. Opt. Soc. Am. 56, 423 (1966)ADSCrossRefGoogle Scholar
  13. 4.13
    A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda: Optical reconstruction of image from Fraunhofer electron-hologram. Jpn. J. Appl. Phys. 7, 295 (1968)ADSCrossRefGoogle Scholar
  14. 4.14
    K.-J. Hanszen: Holographische Rekonstruktions-Verfahren in der Elektronenmikroskopie and ihre kontrastübertragunstheoretische Deutung. Teil A: In-line Fresnel-Holographie. Optik 32, 74 (1970)Google Scholar
  15. 4.15
    J. Munch: Experimental electron holography. Optik 43, 79 (1975)Google Scholar
  16. 4.16
    M. Bonnet, M. Troyon, P. Gallion: Possible applications of Fraunhofer holography in high resolution electron microscopy. Proc. Int’I Congress on Electron Microscopy, Toronto, 1978, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) Vol. 1, pp. 222–223Google Scholar
  17. 4.17
    G. Möllenstedt, H. Wahl: Elektronenholographie and Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340 (1968)ADSCrossRefGoogle Scholar
  18. 4.18
    A. Tonomura: Electron beam holography. J. Electron Microsc. 18, 77 (1969)Google Scholar
  19. 4.19
    I. Weingärtner, W. Mirandé, E. Menzel: Enhancement of resolution in electron microscopy by image holography. Optik 30, 318 (1969)Google Scholar
  20. 4.20
    H. Tomita, T. Matsuda, T. Komoda: Electron microholography by two-beam method. Jpn. J. Appl. Phys. 9, 719 (1970)Google Scholar
  21. 4.21
    H. Tomita, T. Matsuda, T. Komoda: Off-axis electron microholography. Jpn. J. Appl. Phys. 11, 143 (1972)ADSCrossRefGoogle Scholar
  22. 4.22
    G. Saxon: Division of wavefront side-band Fresnel holography with electrons. Optik 35, 195 (1972)Google Scholar
  23. 4.23
    G. Saxon: The compensation of magnetic lens wavefront aberrations in side-band holography with electrons. Optik 35, 359 (1972)Google Scholar
  24. 4.24
    A. Tonomura, T. Matsuda, J. Endo, H. Todokoro, T. Komoda: Development of a field emission electron microscope. J. Electron Microsc. 28, 1 (1979)Google Scholar
  25. 4.25
    A. Tonomura, T. Matsuda, J. Endo: High resolution electron holography with field emission electron microscope. Jpn. J. Appl. Phys. 18, 9 (1979)ADSCrossRefGoogle Scholar
  26. 4.26
    H. Lichte: Electron biprism interference fringes of 0.08 nm spacing for high resolution electron holography. Optik 70, 176 (1985)Google Scholar
  27. 4.27
    H. Lichte: Electron holography approaching atomic resolution. Ultramicroscopy 20, 293 (1986)CrossRefGoogle Scholar
  28. 4.28
    E. Völkl, H. Lichte: Electron holograms for subangstrom point resolution. Ultramicroscopy 32, 177 (1990)CrossRefGoogle Scholar
  29. 4.29
    T. Kawasaki, T. Matsuda, J. Endo, A. Tonomura: Observation of a 0.055 nm spacing lattice image in gold using a field emission electron microscope. Jpn. J. Appl. Phys. 29, L508 (1990)ADSCrossRefGoogle Scholar
  30. 4.30
    T. Kawasaki, Q. Ru, T. Matsuda, Y. Bando, A. Tonomura: High resolution holography observation of H-Nb2 05. Jpn. J. Appl. Phys. 30, L1830 (1991)ADSCrossRefGoogle Scholar
  31. 4.31
    T. Tanji, K. Urata, K. Ishizuka, Q. Ru, A. Tonomura: Observation of atomic surface potential by electron holography. Ultramicroscopy 49, 259 (1993)CrossRefGoogle Scholar
  32. 4.32
    G. Matteucci, G.F. Missiroli, G. Pozzi: A new off-axis Fresnel holographic method in transmission electron microscopy. Ultramicroscopy 8, 403 (1982)CrossRefGoogle Scholar
  33. 4.33
    Q. Ru, N. Osakabe, J. Endo, A. Tonomura: Electron holography available in a nonbiprism transmission electron microscope. Ultramicrosc. 53, 1 (1994)Google Scholar
  34. 4.34
    Q. Ru: Incoherent electron holography. J. Appl. Phys. 77, 1421 (1995)Google Scholar
  35. 4.35
    R. Lauer: Fourier-Holographie mit Elektronen. Optik 67, 159 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Akira Tonomura
    • 1
  1. 1.Advanced Research LaboratoryHitachi, Ltd.SaitamaJapan

Personalised recommendations