Skip to main content

Transparent Fuzzy Systems in Modelling and Control

  • Chapter
Interpretability Issues in Fuzzy Modeling

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 128))

Abstract

This chapter deals with low-level transparency of fuzzy systems that is necessary to ensure reliable interpretation of linguistic information provided by fuzzy systems. It is shown that for different types of fuzzy systems different definitions of transparency apply. Particular attention is paid to transparency protection mechanisms for data-driven optimisation algorithms such as gradient descent and genetic algorithms that otherwise would destroy the semantics of fuzzy systems in the course of optimisation. The need for transparency in fuzzy control is discussed and further illustrated by a control application of truck backer-upper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.A. Zadeh. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Systems, Man and Cybernetics, 3:28–44, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  2. E.H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Studies, 7:1–13, 1975.

    Article  MATH  Google Scholar 

  3. L.P. Holmblad and J.J. Ostergaard. Control of Cement Kiln by Fuzzy Logic. In MM-Gupta and E. Sanchez, editors, Approximate Reasoning in Decision Analysis, pages 389–400. Amsterdam, Holland, 1983.

    Google Scholar 

  4. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems, Man and Cybernetics, SMC-15(1):116–132, 1985.

    Article  Google Scholar 

  5. L.-X. Wang and J.M. Mendel. Back-propagation fuzzy system as nonlinear dynamic system identifiers. Proc. 1st IEEE Int. Conf. on Fuzzy Systems. pages 1409–1416, San Diego, CA, USA, 1992.

    Google Scholar 

  6. J.-S.R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Systems, Man and Cybernetics, 23(3):665–685, 1993.

    Article  Google Scholar 

  7. R. Babuska. Fuzzy Modeling and Identification, Ph.D. dissertation. Technical University of Delft, Delft, Holland, 1997.

    Google Scholar 

  8. J. Liska and S.S. Melsheimer. Complete design of fuzzy logic systems using genetic algorithms. Proc. 3 rd IEEE Int. Conf on Fuzzy Systems, pages 1377–1382, Orlando, FL, USA, 1994.

    Google Scholar 

  9. J.A. Roubos and M. Setnes. Compact fuzzy models through complexity reduction and evolutionary optimization. Proc IEEE Int. Conf. Fuzzy Systems, pages 762–767. San Antonio, TX, USA, 2000.

    Google Scholar 

  10. M. Brown and C.J. Harris. Neurofuzzy Adaptive Modelling and Control, Prentice Hall, Englewood Cliffs. 1994.

    Google Scholar 

  11. M. Setnes, R. Babuska and H.B. Verbruggen. Rule-Based Modeling: Precision and Transparency. IEEE Trans. Systems, Man and Cybernetics. 28(1):165–169, 1998.

    Article  Google Scholar 

  12. D. Nauck, F. Klawonn and R. Kruse. Foundations of Neuro-Fuzzy Systems. Wiley, Chichester, UK, 1997.

    Google Scholar 

  13. Y. Jin. Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Systems, 8(2):212–220, 2000.

    Article  Google Scholar 

  14. R. Babuska. Construction of fuzzy systems — Interplay between precision and transparency. Proc. European Symp. Intelligent Techniques (ESIT), pages 445–452, Aachen, Germany, 2000.

    Google Scholar 

  15. A. Lotfi, H.C. Andersen and A.C. Tsoi. Interpretation preservation of adaptive fuzzy inference systems. Int. J. Approximate Reasoning, 15(4):379–394, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.V. de Oliveira. Semantic constraints for membership function optimization. IEEE Trans. Systems, Man and Cybernetics, 29(1):128–138, 1999.

    Article  Google Scholar 

  17. A. Riid and E. RĂ¼stern. Transparent fuzzy systems and modeling with transparency protection. Proc. IFAC Symp. on Artificial Intelligence in Real Time Control, pages 229–234. Budapest, Hungary, 2000.

    Google Scholar 

  18. A. Riid, P. Jartsev and E. RĂ¼stern. Genetic algorithms in transparent fuzzy modeling. Proc. 7th Biennal Baltic Electronic Conf. 2000, pages 91–94. Tallinn, Estonia, 2000.

    Google Scholar 

  19. A. Riid, R. Isotamm and E. RĂ¼stern. Transparency analysis of 1st order TakagiSugeno systems. Proc 10th Int. Conf. System-Modeling-Control, 2:165–170. Zakopane, Poland, 2001.

    Google Scholar 

  20. M. Bikdash. A highly interpretable form of Sugeno inference systems. IEEE Trans. Fuzzy Systems, 7(6):686–696, 1999.

    Article  Google Scholar 

  21. R. Babuska, C. Fantuzzi, U. Kaymak and H.B. Verbruggen. Improved inference for Takagi-Sugeno models. Proc. 5 th IEEE Int. Conf. Fuzzy Systems, pages 701–706, New Orleans, LA, USA, 1996.

    Google Scholar 

  22. A. Fiordaliso. A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis. Fuzzy Sets and Systems, 118(2):207–318, 2001.

    Google Scholar 

  23. L.-X. Wang and J.M. Mendel. Generating fuzzy rules by learning from examples. IEEE Trans. Systems, Man, and Cybernetics, 22(6): 1414–1427, 1992.

    Article  MathSciNet  Google Scholar 

  24. J. Yen, L. Wang, and W. Gillespie. Improving the Interpretability of TSK Fuzzy Models by Combining Global Learning and Local Learning. IEEE Transactions on Fuzzy Systems, 6(4): 530–537, 1998.

    Article  Google Scholar 

  25. R. Jager. Fuzzy Logic in Control, Ph.D. dissertation. Technical University of Delft, Delft, Holland, 1995.

    Google Scholar 

  26. F. Guely and P. Siarry. Gradient descent method for optimizing various fuzzy rule bases. Proc. 2nd IEEE Int. Conf. Fuzzy Systems, pages 1241–1246. San Francisco, CA, USA, 1993.

    Google Scholar 

  27. H. Nomura, I. Hayashi and N. Wakami. A learning method of fuzzy inference by descent method. Proc. 1st IEEE Int. Conf. on Fuzzy Systems, pages 485–491. San Diego, CA, USA, 1992.

    Google Scholar 

  28. C.L. Karr and E.J. Gentry. Fuzzy control of pH using genetic algorithms. IEEE Transactions on Fuzzy Systems, 1(1): 46–53, 1993.

    Article  Google Scholar 

  29. C.C. Lee. Fuzzy logic in control systems: Part I and Part II. IEEE Trans. Systems, Man and Cybernetics, 20(2):404–435, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. J. Espinosa, M. L. Hadjili, V. Wertz and J. Vandewalle. Predictive control using fuzzy models — Comparative study. Proc. European Control Conférence. Karlsruhe Germany, 1999.

    Google Scholar 

  31. R. Babuska, M. A. Botto, J.S. da Costa, H.B. Verbruggen. Neural and fuzzy modeling in nonlinear predictive control: a comparative study. Proc. Computational Engineering in Systems Applications: Symposium on Control, Optimization and Supervision, pages 1049–1054. Lille, France, 1996.

    Google Scholar 

  32. J. Abonyi, L. Nagy and F. Szeifert. “Indirect Model Based Control Using Fuzzy Model Inversion. Proc. IEEE Int. Conf. Intelligent Systems, pages 951–956. Vienna, Austria, 1998.

    Google Scholar 

  33. K.J. Hunt and T.A. Johansen. Design and analysis of gain-scheduled local controller networks. International Journal of Control, 66(5):619–651, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Korba and P.M. Frank. An applied optimization-based gain-scheduled fuzzy control. Proc. American Control Conference, pages 3383–3387, Chicago, CH, USA, 2000.

    Google Scholar 

  35. M. Braae and D.A. Rutherford. Theoretical and Linguistic Aspects of the Fuzzy Logic Controller. Automatica, 15(5):553–577, 1979.

    Article  MATH  Google Scholar 

  36. J-S. R. Jang. Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. Neural Networks, 3(5):714–723, 1992.

    Article  Google Scholar 

  37. T.J. Procyk and E.H. Mamdani. A linguistic self-organizing process controller. Automatica, 15:15–30, 1979.

    Article  MATH  Google Scholar 

  38. H.R. Berenji and P. Khedkar. Learning and tuning fuzzy logic controllers through reinforcements. IEEE Trans. Neural Networks, 3(5):724–740, 1992.

    Article  Google Scholar 

  39. D. Nguyen and B. Widrow. Neural networks for self learning control systems. IEEE Contr. Syst. Mag., 10(2): 18–23, 1990.

    Article  Google Scholar 

  40. M. Schoenauer and E. Ronald. Neuro-genetic truck backer-upper controller. Proc. First Int. Conf Evolutionary Comp., pages 720–723. Orlando, FL, USA, 1994.

    Google Scholar 

  41. S.-G. Kong and B. Kosko. Adaptive fuzzy systems for backing up a truck-and-trailer. IEEE Trans. Neural Networks, 3(5):211–223, 1992.

    Article  Google Scholar 

  42. A. Riid and E. RĂ¼stern. Fuzzy logic in control: Truck backer-upper problem revisited. Proc. IEEE 10th Int. Conf. Fuzzy Systems, 1. Melbourne, Australia, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riid, A., RĂ¼stern, E. (2003). Transparent Fuzzy Systems in Modelling and Control. In: Casillas, J., CordĂ³n, O., Herrera, F., Magdalena, L. (eds) Interpretability Issues in Fuzzy Modeling. Studies in Fuzziness and Soft Computing, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37057-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37057-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05702-1

  • Online ISBN: 978-3-540-37057-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics