Skip to main content

About the trade-off between accuracy and interpretability of Takagi-Sugeno models in the context of nonlinear time series forecasting

  • Chapter
Interpretability Issues in Fuzzy Modeling

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 128))

Abstract

The focus of this chapter is related to the question of how to find appropriate Takagi-Sugeno (TS) rules in the framework of (chaotic) time series forecasting. We propose a generalization of the conventional TS system (GTS) allowing to evaluate the importance of any rule in the inference process. The added value of this feature has been put in light on two well-known chaotic time series.

Local (clustering-based) and global (gradient-based) learning strategies for GTS systems are compared in terms of interpretability and accuracy. It appears that there is an unavoidable compromise between these two objectives. Global learning seems to be superior in term of accuracy but cannot achieve the same level of interpretability as the local approach.

We also present an application of the GTS model in the field of forecasts combination with the target of generating interpretable final rules. This has led us to put additional constraints in the model. More precisely, we force the local linear models (rules conclusions) to achieve convex combination of the forecasts (input patterns). The proposed system may be useful for a wide range of applications where a consensus is required, including forecasts synthesis, controllers and patterns classifiers aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška, R. (1996) Fuzzy Modeling and Identification. Thesis, Delft University of Technology

    Google Scholar 

  2. Bates, J.M., Granger, C.W.J. (1969) The combination of forecasts. Operational Research Quarterly 20, 451–468

    Article  Google Scholar 

  3. Bersini, H. Duchateau, A., Bradshaw, N. (1997) Using incremental learning algorithms in the search for minimal and effective fuzzy models. Proceedings of the FUZZ-IEEE’97 Conference, 1417–1422

    Google Scholar 

  4. Bezdek, J. (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  5. Buckley, J.J. (1992) Universal fuzzy controllers. Automatica Journal 28, 1245–1248

    Article  MathSciNet  MATH  Google Scholar 

  6. Buckley, J.J., Hayashi, Y. (1993) Numerical relationships between neural networks, continuous functions and fuzzy systems. Fuzzy Sets and Systems 60, 1–8

    Article  MathSciNet  Google Scholar 

  7. Bunn, D.W. (1975) A Bayesian approach to the linear combination of forecasts. Operational Research Quarterly 26, 325–329

    Article  MATH  Google Scholar 

  8. Castagli, M. (1989) Nonlinear prediction of chaotic time series. Physica D 35, 335–356

    Article  MathSciNet  Google Scholar 

  9. Chiu, S.L. (1994) Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems 2, 267–278

    Google Scholar 

  10. Clemen, R.T. (1989) Combining forecasts: a review and annotated bibliography. International Journal of Forecasting 5, 559–583

    Article  Google Scholar 

  11. Combs, W E., Andrews, J.E. (1998) Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Transactions on Fuzzy Systems 6, 1–11

    Article  Google Scholar 

  12. Dickinson, J.P. (1975) Some comments on the combination of forecasts. Operational Research Quarterly 26, 205–210

    Article  MathSciNet  MATH  Google Scholar 

  13. Doyle, P., Fenwick, I.A. (1976) Sales forecasting using a combination of approaches. Long-Range Planning 9, 60–69

    Article  Google Scholar 

  14. Dubois, D., Prade, H., Yager, R.R. (1997) Fuzzy Information Engineering: A Guided Tour of Applications. Wiley and Sons, New York

    Google Scholar 

  15. Farmer, J.D., Sidorowich, J.J. (1987) Predicting chaotic time series. Physical Review Letters 59, 845–848

    Article  MathSciNet  Google Scholar 

  16. Fiordaliso, A. (1998) A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy systems. International Journal of Forecasting 14, 367–379

    Article  Google Scholar 

  17. Fiordaliso, A. (1999) Systèmes flous et prévision de séries temporelles. Hermès, Paris

    MATH  Google Scholar 

  18. Fiordaliso, A. (2000) Autostructuration of fuzzy systems by rules sensitivity analysis. International Journal for Fuzzy Sets and Systems 118, 281–296

    Article  MathSciNet  Google Scholar 

  19. Gath, I., Geva, A.B. (1989) Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 773–781

    Article  Google Scholar 

  20. Gershenfeld, N.A., Weigend, A.S. (1993) The future of time series: learning and understanding. In: Gershenfeld, N.A., Weigend, S.A. (Eds.): Time series prediction: forecasting the future and understanding the past. Addison Wesley, Palo Alto, 1–70.

    Google Scholar 

  21. Geyer, A., Taudes, A. (1990) A fuzzy time series analyzer. In: Janko, W.H., Roubens, M., Zimmermann, H.-J. (Eds.): Progress in Fuzzy Sets and Systems. Kluwer Academic Publishers, London, 63–74

    Chapter  Google Scholar 

  22. Gorrini, V., Salom, T., Bersini, H. (1995) Self-structuring systems for function approximation. Proceedings of the FUZZ-IEEE/IFES’95 Conference, 531–536

    Google Scholar 

  23. Granger, C.W.J., Ramanathan, R. (1984) Improved methods of combining forecasts. Journal of Forecasting 3, 197–204

    Article  Google Scholar 

  24. Gustafson, E.E., Kessel, W.C. (1979) Fuzzy clustering with a fuzzy covariance matrix Proceedings of the IEEE CDC, 761–766

    Google Scholar 

  25. Hartani, R., Nguyen, H.T., Bouchon-Meunier, B. (1996) Sur l’approximation universelle des systèmes flous. RAIRO-APII-JESA 30, 645–663

    Google Scholar 

  26. Hataway, R., Bezdek, J. (1993) Switching regression models and fuzzy clustering. IEEE Transactions on Fuzzy Systems 1, 195–204

    Article  Google Scholar 

  27. Hinton, G., (1989) Machine Learning: Paradigms and Methods. Artificial Intelligence 40, 185–234

    Article  Google Scholar 

  28. Hübner, U., Abraham, N.B., Weiss, C.O. (1989) Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Physical Review A 40, 6354–6365

    Article  Google Scholar 

  29. Jacobs, RA., Jordan, M.I., Nowlan, S.J., Hinton, G.E. (1991) Adaptive Mixture of Local Experts. Neural Computation 3, 79–87

    Article  Google Scholar 

  30. Karr, C.L. (1991) Design of an adaptive fuzzy logic controller using a genetic algorithm. Proc. 4th Int. Conf. Genetic Algorithms, 450–457

    Google Scholar 

  31. Kaymak, U., Babuška, R. (1995) Compatible cluster merging for fuzzy modeling. Proceedings of the FUZZ-IEEE/IFES’95 Conference, 897–904

    Google Scholar 

  32. Klir, G.J., Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic — Theory and Applications. Prentice-Hall, London

    MATH  Google Scholar 

  33. Kosko, B. (1994) Fuzzy systems as universal approximators. IEEE Trans. Comput. 43, 1329–1333

    Article  MATH  Google Scholar 

  34. Kreinovich, V.Y. (1991) Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a theorem. Neural Networks 4, 381–383

    Article  Google Scholar 

  35. Kurkova, V. (1991) Kolmogorov’s theorem is relevant. Neural Computation 3, 617–622

    Article  Google Scholar 

  36. Kurkova, V. (1992) Kolmogorov’s theorem and multilayer neural networks. Neural Networks 5, 501–506

    Article  Google Scholar 

  37. Lawson, C.L., Hanson, R.J. (1974) Solving Least Squares Problems. Prentice Hall, New York

    MATH  Google Scholar 

  38. Lin, C.T., Lee, C.S.G. (1994) Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Transactions on Fuzzy Systems 2, 46–63

    Article  Google Scholar 

  39. Marquardt, D.W. (1963) An algorithm for least squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431–441

    Article  MathSciNet  MATH  Google Scholar 

  40. McLachlan, B., Basford, K. (1988) Mixture Models: Inference and Applications to Clustering. Dekker, Basel

    MATH  Google Scholar 

  41. Morabito, F.C. (1997) Advances in Intelligent Systems. IOS Press, Amsterdam

    MATH  Google Scholar 

  42. Nguyen, H.T., Kreinovich, V. (1993) On approximation of controls by fuzzy systems. Proc. Fifth IFSA, 1414–1417

    Google Scholar 

  43. Nomura, H., Hayashi, I., Wakami, N. (1992) A learning method of fuzzy inference rules by descent method. Proc. IEEE Int. Conf. Fuzzy Syst., 203–210

    Google Scholar 

  44. Platt, J. (1991) Resource-allocating network for function interpolation. Neural Computation 3, 213–225

    Article  MathSciNet  Google Scholar 

  45. Poggio, T., Girosi, F. (1990) Networks for approximation and learning. Proceedings of the IEEE 78, 1481–1497

    Article  Google Scholar 

  46. Quandt, R.E., Ramsey, J.B. (1972) A new approach to estimating switching regressions. Journal of the American Statistical Society 67, 306–310

    Article  MATH  Google Scholar 

  47. Reid, D.J. (1968) Combining three estimates of gross domestic products. Economica 35, 431–444

    Article  Google Scholar 

  48. Schwarz, G. (1978) Estimating the Dimension of a Model. Annals of Statistics 6, 461–464

    Article  MathSciNet  MATH  Google Scholar 

  49. Sugeno, M., Yasukawa, T. (1993) A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1, 7–31

    Article  Google Scholar 

  50. Sugihara, G., May, R.M. (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741

    Article  Google Scholar 

  51. Sun, C.T. (1994) Rulebase structure identification in an adaptive network based fuzzy inference system. IEEE Transactions on Fuzzy Systems 2, 64–73

    Article  Google Scholar 

  52. Takagi, T., Sugeno, M. (1985) Fuzzy identification of systems and its application to modelling and control. IEEE Transactions on Systems, Man and Cybernetics 15, 116–132

    Article  MATH  Google Scholar 

  53. Takens, F. (1981) Detecting strange attractors in turbulence. Lecture Notes in Mathematics 898, 336–381

    Article  MathSciNet  Google Scholar 

  54. Teran, R., Draye, J.P. et al. (1996) Predicting a Chaotic Time Series Using a Dynamical Recurrent Neural Network. Proceedings IWISP ’96, 115–118

    Article  Google Scholar 

  55. Wang, L.-X. (1992) Fuzzy systems are universal controllers. Proc. IEEE International Conference on Fuzzy Systems, 1163–1170

    Google Scholar 

  56. Wang, L.-X, Mendel, J.M. (1992) Fuzzy basis functions, universal approximation and orthogonal least-squares learning. IEEE Trans. Neural Networks 3, 807–814

    Article  Google Scholar 

  57. Weigend, A., Huberman, B., Rumelhart, D. (1992) Predicting sunspots and exchange rates with connectionnist methods. In: M. Castagli, S. Eubank (Eds.): Nonlinear Modelling and Forecasting. Addison-Wesley, New York, 395–432

    Google Scholar 

  58. Winkler, R.L. (1981) Combining probability distributions from dependent information sources. Management Science 27, 479–488

    Article  MATH  Google Scholar 

  59. Wong, F.S., Wang, P.Z. (1991) A fuzzy neural network for Forex rate forecasting. In: Terano, T., Sugeno, M., Mukaidono, M., Shigemasu, K. (Eds.): Fuzzy Engineering Toward Human Friendly Systems. IOS Press, Amsterdam, 535–545

    Google Scholar 

  60. Zeng, X., Singh, M.J. (1994) Approximation theory of fuzzy systems: SISO case. IEEE Trans. on Fuzzy Systems 2, 162–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiordaliso, A. (2003). About the trade-off between accuracy and interpretability of Takagi-Sugeno models in the context of nonlinear time series forecasting. In: Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds) Interpretability Issues in Fuzzy Modeling. Studies in Fuzziness and Soft Computing, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37057-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37057-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05702-1

  • Online ISBN: 978-3-540-37057-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics