Skip to main content

Simplification and reduction of fuzzy rules

  • Chapter
Book cover Interpretability Issues in Fuzzy Modeling

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 128))

Abstract

This chapter addresses rule base complexity in fuzzy models obtained from data. Data-driven fuzzy modeling is introduced, and two main approaches to complexity reduction in fuzzy rule-based models are presented: Similarity-driven rule base simplification, and rule reduction with orthogonal transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Setnes, R. Babuška, and H. B. Verbruggen. Rule-based modeling: Precision and transparency. IEEE Trans. Systems, Man and Cybernetics — Part C: Applications and Reviews, 28(1):165–169, 1998.

    Article  Google Scholar 

  2. J. Valente de Oliveira. Semantic constraints for membership function optimization. IEEE Trans. Systems, Man and Cybernetics — Part A: Systems and Humans, 29(1):128–138, 1999.

    Article  Google Scholar 

  3. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Systems, Man, and Cybernetics, 15:116–132, 1985.

    Article  MATH  Google Scholar 

  4. J. Yen, L. Wang, and C.W. Gillespie. Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans. Fuzzy Systems, 6(4):530–537, 1998.

    Article  Google Scholar 

  5. M. Setnes. Complexity reduction in fuzzy systems. Ph.D. Thesis, Delft University of Technology, Dep. of El. Eng., Control Laboratory, Delft, the Netherlands, February 2001.

    Google Scholar 

  6. M. Setnes, R. Babuška, U. Kaymak, and H. R. van Nauta Lemke. Similarity measures in fuzzy rule base simplification. IEEE Trans. Systems, Man and Cybernetics — Part B: Cybernetics, 28(3):376–386, 1998.

    Article  Google Scholar 

  7. R. Babuka. Fuzzy Modeling for Control. Kluwer Academic Pub., Boston, 1998.

    Book  Google Scholar 

  8. L. X. Wang and J. M. Mendel. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Networks, 3(5):807–813, 1992.

    Article  Google Scholar 

  9. J. Hohensohn and J. M. Mendel. Two-pass orthogonal least-squares algorithm to train and reduce fuzzy logic systems. In Proceedings of FUZZ-IEEE’94, pp 696–700, Orlando, USA, 1994.

    Google Scholar 

  10. G.C. Mouzouris and J.M. Mendel. Designing fuzzy logic systems for uncertain environments using a singular-value-qr decomposition method. In Proceedings of FUZZ-IEEE’96, pp 295–301, New Orleans, USA, 1996.

    Google Scholar 

  11. J. Yen and L. Wang. Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Trans. Systems, Man and Cybernetics — Part B: Cybernetics, 29(2):13–24, 1999.

    Article  Google Scholar 

  12. Y. Yam, P. Baranyi, and C-T. Yang. Reduction of fuzzy rule base via singular value decomposition. IEEE Trans. Fuzzy Systems, 7(2):120–132, 1999.

    Article  Google Scholar 

  13. S. Chen, C.F.N. Cowan, and P.M. Grant. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks, 2(2):302–309, 1991.

    Article  Google Scholar 

  14. G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins University Press, London, 2 edition, 1989.

    MATH  Google Scholar 

  15. G.H. Golub. Numerical methods for solving least squares problems. Numerical Methematics, (7):206–216, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Yen and L. Wang. Application of statistical information criteria for optimal fuzzy model construction. IEEE Trans. Fuzzy Systems, 6(3):362–372, 1998.

    Article  Google Scholar 

  17. G.W. Stewart. Rank degeneracy. SIAM J. Sci. and Stat. Comput., 5(2):403–413, 1984.

    Article  MATH  Google Scholar 

  18. M. Setnes and R. Babuška. Rule base reduction: some comments on the use of orthogonal transforms. IEEE Trans. Systems, Man and Cybernetics — Part C: Applications and Reviews, 31(2):199–206, 2001.

    Article  Google Scholar 

  19. Magne Setnes. Supervised fuzzy clustering for rule extraction. IEEE Trans. Fuzzy Systems, 8(4):416–424, 2000.

    Article  Google Scholar 

  20. M. Setnes, R. Babuška, and H. B. Verbruggen. Transparent fuzzy modeling. International Journal of Human-Computer Studies, 49(2):159–179, 1998.

    Article  Google Scholar 

  21. M. Setnes and J.A. Roubos. GA-fuzzy modeling and classification: complexity and performance. IEEE Trans. Fuzzy Systems, 8(5):509–522, 2000.

    Article  Google Scholar 

  22. M. Setnes and U. Kaymak. Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. IEEE Trans. Fuzzy Systems, 9(1):153–163, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Setnes, M. (2003). Simplification and reduction of fuzzy rules. In: Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds) Interpretability Issues in Fuzzy Modeling. Studies in Fuzziness and Soft Computing, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37057-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37057-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05702-1

  • Online ISBN: 978-3-540-37057-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics