Skip to main content

The Impact of Different Gas Exchange Formulations and Wind Speed Products on Global Air-Sea CO2 Fluxes

  • Chapter
Book cover Transport at the Air-Sea Interface

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Significant advances have been made over the last decade in estimating air-sea CO2 fluxes over the ocean by the bulk formulation that expresses the flux as the product of the gas transfer velocity and the concentration difference of aqueous CO2 over the liquid boundary layer. This has resulted in a believable global monthly climatology of air-sea CO2 fluxes over the ocean on a 4o by 5o grid [38]. It is shown here that the global air-sea CO2 fluxes are very sensitive to estimates of gas transfer velocity and the parameterization of gas transfer with wind. Wind speeds can now be resolved at sufficient temporal and spatial resolution that they should not limit the estimates, but the absolute magnitudes of winds for different wind products differ significantly. It is recommended to use satellite-derived wind products that have the appropriate resolution instead of assimilated products that often do not appropriately resolve variability on sub-daily and sub-25-km space scales. Parameterizations of gas exchange with wind differ in functional form and magnitude but the difference between the most-used quadratic relationships is about 15%. Based on current estimates of uncertainty of the air-water CO2 concentration differences, the winds, and the gas exchange-wind speed parameterization, each parameter contributes similarly to the overall uncertainty in the flux that is estimated at 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asher W.E., Wanninkhof R. (1998a) Transient tracers and air-sea gas transfer. J Geophys Res 103:15939–15958

    Article  CAS  Google Scholar 

  2. Asher W.E., Wanninkhof R. (1998b) The effect of bubble-mediated gas transfer on purposeful dual gaseous-tracer experiments. J Geophys Res 103:10555–10560

    Article  Google Scholar 

  3. Asher W.E., Edson J., McGillis W.R., Wanninkhof R., Ho D.T., Litchendorf T. (2002) Fractional area whitecap coverage and air-sea gas transfer velocities measured during Gas Ex-98. In: Donelan M., Drennan W., Saltzman E., Wanninkhof R. (eds), Gas transfer at water surfaces. AGU, Geophysical Monograph 127, Washington, DC, pp 199–205

    Google Scholar 

  4. Battle M., Bender M.L., Tans P.P., White J.W.C., Ellis J.T., Conway T., Francey R.J. (2000) Global carbon sinks and their variability inferred from atmospheric O2 and δ 13C. Science 287:2467–2470

    Article  CAS  Google Scholar 

  5. Broecker H.C., Peterman J., Siems W. (1978) The influence of wind on CO2 exchange in a wind-wave tunnel, including the effects of mono layers. J Mar Res 36:595–610

    CAS  Google Scholar 

  6. Broecker W.S., Peng T.-H., Östlund G., Stuiver M. (1985) The distribution of bomb radiocarbon in the ocean. J Geophys Res 99:6953–6970

    Article  Google Scholar 

  7. Broecker W.S., Sutherland S., Smethie W., Peng T.-H., Östlund G. (1995) Oceanic radiocarbon: Separation of the natural and bomb components. Global Biogeochem Cycles 9:263–288

    Article  Google Scholar 

  8. Cember R. (1989) Bomb radiocarbon in the Red Sea: A medium-scale gas exchange experiment. J Geophys Res 94:2111–2123

    Article  CAS  Google Scholar 

  9. Deacon E.L. (1977) Gas transfer to and across an air-water interface. Tellus 29:363–374

    Article  CAS  Google Scholar 

  10. Degreif K. (2006) “Untersuchungen zum Gasaustausch-Entwicklung und Applikation eines zeitlich aufgelösten Massenbilanzverfahrens,” PhD thesis, Universität Heidelberg, Heidelberg

    Google Scholar 

  11. Duffy D.B., Caldeira K. (1995) Three-dimensional model calculation of ocean uptake of bomb 14C and implications for the global budget of bomb 14C. Global Biogeochem Cycles 9:373–375

    Article  CAS  Google Scholar 

  12. Erickson III D.J. (1993) A stability-dependent theory for air-sea gas exchange. J Geophys Res 98:8471–8488

    Article  Google Scholar 

  13. Esbensen S.K., Kushnir Y. (1981) The heat budget of the global ocean: An atlas based on estimates from surface marine observations. Climatic Res Inst Rept 29, Oregon State Univ, Corvalis OR

    Google Scholar 

  14. Feely R.A., Takahashi T., Wanninkhof R., McPhaden M.J., Costa C.E., Sutherland S.C., Carr M.-E. (2006) Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J Geophys Res 111: doi:10.1029/2005JC003129

    Google Scholar 

  15. Hare J.E., Fairall C.W., McGillis W.R., Edson J.B., Ward B., Wanninkhof R. (2004) Evaluation of National Oceanic and Atmospheric Administration / Coupled-Ocean Atmospheric Response Experiment (NOAA / COARE) air-sea gas transfer parameterization using GasEx data. J Geophys Res 109: doi: 10.1029/2003JC001831

    Google Scholar 

  16. Hasse L. (1990) On the mechanism of gas exchange at the air-sea interface. Tellus 42B:250–253

    CAS  Google Scholar 

  17. Hesshaimer V., Heimann M., Levin I. (1994) Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370:201–203

    Article  CAS  Google Scholar 

  18. Ho D.T., Law C.S., Smith M.J., Schlosser P., Harvey M., Hill P. (2006) Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys Res Let 33: doi: 10.1029/2006GL026817

    Google Scholar 

  19. Houghton J.T., Meira Filho L.G., Bruce J.P., Lee H., Callander B.A., Haites E.F. (eds) (1995) Climate change 1994: Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  20. Jähne B., Münnich K.O., Bösinger R., Dutzi A., Huber W., Libner P. (1987) On parameters influencing air-water gas exchange. J Geophys Res 92:1937–1949

    Article  Google Scholar 

  21. Key R.M., Kozyr A., Sabine C.L., Lee K., Wanninkhof R., Bullister J.L., Feely R.A., Millero F.J., Mordy C., Peng T.-H. (2004) A global ocean carbon climatology: Results from the Global Data Analysis Project (GLODAP). Global Biogeochem Cycles 18: doi: 10.1029/2004GB002247

    Google Scholar 

  22. Krakauer N.Y., Randerson J.T., Primau F.W., Gruber N., Denemenlis D. (2006) Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity. Tellus, in press

    Google Scholar 

  23. Kromer B., Roether W. (1983) Field measurements of air-sea gas exchange by the radon deficit method during JASIN (1978) and FGGE (1979). Meteor Forsch Ergebnisse A/B 24:55–75

    Google Scholar 

  24. Lee K., Wanninkhof R., Takahashi T., Doney S., Feely R.A. (1998) Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature 396:155–159

    Article  CAS  Google Scholar 

  25. Liss P.S., Merlivat L. (1986) Air-sea gas exchange rates: Introduction and synthesis. In: Buat-Menard P. (ed) The role of air-sea exchange in geochemical cycling. Reidel, Boston, pp 113–129

    Google Scholar 

  26. McGillis W.R., Wanninkhof R. (2006) Aqueous CO2 gradients for air-sea flux estimates. Mar Chem 98:100–108

    Article  CAS  Google Scholar 

  27. McGillis W.R., Edson J.B., Hare J.E., Fairall C.W. (2001) Direct covariance air-sea CO2 fluxes. J Geophys Res 106:16729–16745

    Article  CAS  Google Scholar 

  28. McGillis W.R., Edson J.B., Zappa C.J., Ware J.D., McKenna S.P., Terray E.A., Hare J.E., Fairall C.W., Drennan W., Donelan M., DeGrandpre M.D., Wanninkhof R., Feely R.A. (2004) Air-sea CO2 exchange in the equatorial Pacific. J Geophys Res 109: doi: 10.1029/2003JC002256

    Google Scholar 

  29. McNeil C.L., Merlivat L. (1996) The warm oceanic surface layer: Implications for CO2 fluxes and surface gas measurements. Geophys Res Let 23:3575–3578

    Article  CAS  Google Scholar 

  30. Monahan E.C., Spillane M.C. (1984) The role of oceanic whitecaps in air-sea gas exchange. In: Brutsaert W., Jirka G.H. (eds), Gas transfer at water surfaces. Reidel, Boston, pp 495–503

    Google Scholar 

  31. Naegler T., Ciais P., Rodgers K., Levin I. (2006) Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophys Res Let 33:doi:10.1929/2005GL025408

    Google Scholar 

  32. Nightingale P.D., Malin G., Law C.S., Watson A.J., Liss P.S., Liddicoat M.I., Boutin J., Upstill-Goddard R.C. (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14:373–387

    Article  CAS  Google Scholar 

  33. Park G.-H., Lee K., Wanninkhof R., Feely R.A. (2006) Empirical temperature-based estimates of variability in the oceanic uptake of CO2 over the past two decades. J Geophys Res 111:doi: 10.1029/2005JC003090

    Google Scholar 

  34. Peacock S. (2004) Debate over the ocean bomb radiocarbon sink: Closing the gap. Global Biogeochem Cycles 18: doi: 10.1029/2003GB002211

    Google Scholar 

  35. Rubin S.I., Key R.M. (2002) Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method. Global Biogeochem Cycles 16: doi: 10.1029/2001GB001432

    Google Scholar 

  36. Smethie W.M., Takahashi T., Chipman D.W., Ledwell J.R. (1985) Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from 222Rn and pCO2 measurements. J Geophys Res 90:7005–7022

    Article  CAS  Google Scholar 

  37. Sweeney C., Gloor M., Jacobson A.J., Key R.M., McKinley G., Sarmiento J.L., Wanninkhof R. (2006) Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochem Cycles, accepted

    Google Scholar 

  38. Takahashi T., Sutherland S.C., Sweeney C., Poisson A., Metzl N., Tilbrook B., Wanninkhof R., Feely R.A., Sabine C., Olafsson J., Nojiri Y. (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects. Deep-Sea Res II 49:1601–1622

    Article  CAS  Google Scholar 

  39. Tans P.P., Fung I.Y., Takahashi T. (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  CAS  Google Scholar 

  40. Wanninkhof R. (1992) Relationship between gas exchange and wind speed over the ocean. J Geophys Res 97:7373–7381

    Article  Google Scholar 

  41. Wanninkhof R., McGillis W.R. (1999) A cubic relationship between gas transfer and wind speed. Geophys Res Let 26:1889–1893

    Article  CAS  Google Scholar 

  42. Wanninkhof R., Doney S.C., Takahashi T., McGillis W.R. (2002) The effect of using time-averaged winds on regional air-sea CO2 fluxes. In: Donelan M., Drennan W., Saltzman E., Wanninkhof R. (eds) Gas transfer at water surfaces. AGU, Geophysical Monograph 127, Washington DC, pp 351–357

    Google Scholar 

  43. Wanninkhof R., Sullivan K.F., Top Z. (2004) Air-sea gas transfer in the Southern Ocean. J Geophys Res 109: doi: 10.1029/2003JC001767

    Google Scholar 

  44. Woolf D.K. (1997) Bubbles and their role in gas exchange. In: Liss P.S., Duce R.A. (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 173–206

    Google Scholar 

  45. Woolf D.K. (2006) Recent developments in parameterization of air-sea gas exchange. Flux News (WCRP), pp 9–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Wanninkhof, R. (2007). The Impact of Different Gas Exchange Formulations and Wind Speed Products on Global Air-Sea CO2 Fluxes. In: Garbe, C.S., Handler, R.A., Jähne, B. (eds) Transport at the Air-Sea Interface. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36906-6_1

Download citation

Publish with us

Policies and ethics