Advertisement

Determination of Detonation Parameters and Efficiency of Solid HE Explosion Products

  • V.M. Belsky
  • M.V. Zhernokletov
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

Problems related to the design of HE containment vessels, an estimation of their security and ability to withstand a variety of external effects, requires versatile experimental research into high explosive properties, the explosion itself, and its thermomechanical effect on the environment. Knowledge pertaining to the mechanisms involved in the initiation and propagation of a detonation wave is needed for effective work in a number of important practical areas, such as:

Keywords

Shock Wave Shock Front Detonation Wave Rarefaction Wave Mass Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Byurlo, E., Detonation Through Effect, Art. Academy Publishing House, Moscow, 1934.Google Scholar
  2. 2.
    2. Cachia, G.P., and Whitbread, E.G., “The Initiation of Explosives by Shock,” Proc., Royal Society of London, Series A, Vol. 246, No. 1245, 1958, pp. 268–273.Google Scholar
  3. 3.
    3. Roth, J., “Shock Sensitivity and Shock Hugoniots of High-Density Granular Explosives,” Proc., 5 th International Symposium on Detonation, Aug. 18–21, 1970, Pasadena, CA, pp. 219–230.Google Scholar
  4. 4.
    4. Ramsay, J.B., and Popolato, A., “Analysis of Shock Wave and Initiation Data for Solid Explisives,” Proc., 4 th International Symposium on Detonation, Oct. 12–15, 1965, White Oak, Maryland, pp. 233–238.Google Scholar
  5. 5.
    5. Campbell, A.W., Davis, W.C., Ramsay, J.B., and Travis, J.R., “Shock Initiation of Solid Explosives,” Physics of Fluids, Vol. 4, No. 4, 1961, pp. 511–521.CrossRefGoogle Scholar
  6. 6.
    6. Koldunov, S.A., Shvedov, K.K., and Dremin, A.N., “Decomposition of Porous Explosives Under the Effect of Shock Waves,” Fizika Goreniya i Vzryva, Vol. 9, No. 2, 1973, pp. 295–304, [English trans., Combustion, Explosion, and Shock Waves, Vol. 9, No. 2, 1973, pp. 255–262].Google Scholar
  7. 7.
    7. Campbell, A.W., Davis, W.C., and Travis, J.R., “Shock Initiation of Detonation in Liquid Explosives,” Physics of Fluids, Vol. 4, No. 4, 1961, pp. 498–510.CrossRefGoogle Scholar
  8. 8.
    8. Jacobs, S.J., Liddiard, T.P., Jr., and Drimmer, B.E., “The Shock-to-Detonation Transition in Solid Explosives,” Proc., 9 th International Symposium on Combustion, Aug. 27-Sep 1, 1962, Ithaca, NY, pp. 517–529.Google Scholar
  9. 9.
    9. Dobratz, B.M., LLNL Explosives Handbook: Proberties of Chemical Explosives and Explosive Simulants, Lawrence Livermore National Laboratory, Livermore, CA, 1981.Google Scholar
  10. 10.
    10. Dremin, A.N. and Koldunov, S.A., “Detonation Initiation by Shock Waves in Cast and Pressed Trinitrotoluene,” in Explosive Practice 63/20, Nedra Publ., Moscow, 1967, pp. 37–50.Google Scholar
  11. 11.
    11. Shvedov, K.K., and Dremin, A.N., “Effect of Charge Aggregate State and Structure on Trinitrotoluene Decomposition in Shock Waves,” in Combustion and Detonation, Proc., 4th All-Union Symposium on Combustion and Detonation, Nauka Publ., Moscow, 1977, pp. 440–446.Google Scholar
  12. 12.
    12. Dremin, A.N., Savrov, S.D., Trofimov, V.S., and Shvedov, K.K., Detonation Waves in Condensed Media, Nauka Publ., Moscow, 1970, p. 164.Google Scholar
  13. 13.
    13. Kanel, G.I., and Dremin, A.N., “Decomposition of Cast Trotyl in ShockWaves,” Fizika Goreniya i Vzryva, Vol. 13, No. 1, 1977, pp. 85–92, [English trans., Combustion, Explosion, and Shock Waves, Vol. 13, No. 1, 1977, pp. 71–77].Google Scholar
  14. 14.
    14. Batkov, Yu.V., Novikov, S.A., Pogorelov, A.P., and Sinitsyn, V.A., “Investigation of the Process of Explosive Transformation of the Composite TG 50/50 Behind a Nonstationary Shock Front,” Fizika Goreniya i Vzryva, Vol. 15, No. 5, 1979, pp. 139–141, [English trans., Combustion, Explosion, and Shock Waves, Vol. 15, No. 5, 1979, pp. 676–678].Google Scholar
  15. 15.
    15. Uokerli, D., et al., “Studying Shock-Wave Initiation of PBX-9404,” in Detonation and High Explosives, Borisov, A.A., ed., Mir Publ., Moscow, 1981, pp. 269–290.Google Scholar
  16. 16.
    16. Lobanov, V.F., “Initiating-Wave Parameter Determination for TG 50/50,” Fizika Goreniya i Vzryva, Vol. 22, No. 5, 1986, pp. 104–111, [English trans., Combustion, Explosion, and Shock Waves, Vol. 22, No. 5, 1986, pp. 589–594].Google Scholar
  17. 17.
    17. Glushak, B.L., Novikov, S.A., and Pogorelov, A.P., “Shock-Wave Initiation of Solid Heterogeneous Explosives,” Fizika Goreniya i Vzryva, Vol. 20, No. 4, 1984, pp. 77–85, [English trans., Combustion, Explosion, and Shock Waves, Vol. 20, No. 4, 1984, pp. 429–436].Google Scholar
  18. 18.
    18. Grin, L., Nidik, E., Li, E., and Tarver, C., “PBX-9404 Chemical Decomposition Initiation by Weak Shock Waves,” in Detonation and High Explosives, Mir Publ., Moscow, 1981, pp. 107–122.Google Scholar
  19. 19.
    19. Setchell, R.E., Ramp-Wave Initiation of Granular Explosives,” Combustion and Flame, Vol. 43, 1981, pp. 255–264.CrossRefGoogle Scholar
  20. 20.
    20. Doronin, G.S., Yermolovich, E.I., and Rabotinsky, A.N., “Pressed Trinitrotoluene Decomposition Kinetics During Smeared-Front Pulse Initiation,” Proc., 1 st All-Union Symposium on Macroscopic Kinetics and Chemical Gas Dynamics, Chernogolovka, 1984, Vol. 1, Part 1, pp. 30–31.Google Scholar
  21. 21.
    21. Campbell, A.W., and Travis, J.R., “The Shock Densensitization of PBX-9404 and Composition B-3,” Proc., 8 th International Symposium on Detonation, Jul. 15–19, Albuquerque, NM, 1985, pp. 1057–1068.Google Scholar
  22. 22.
    22. Batkov, Yu.V., Glushak, B.L., and Novikov, S.A., “Desensitization of Pressed Explosive Compositions Based on TNT, RDX, and HMX Under Double Shock- Wave Loading,” Fizika Goreniya i Vzryva, Vol. 31, No. 4, 1995, pp. 89–92, [English trans., Combustion, Explosion, and Shock Waves, Vol. 31, No. 4, 1995, pp. 482–485].Google Scholar
  23. 23.
    23. Fowles, R., and Williams, R.F., “Plane Stress Wave Propagation in Solids,” Journal of Applied Physics, Vol. 41, No. 1, 1970, pp. 360–363.CrossRefGoogle Scholar
  24. 24.
    24. Batalova, M.V., Bakhrakh, S.M., and Zubarev, V.N., “Excitation of a Detonation in Heterogeneous Explosives by Shock Waves,” Fizika Goreniya i Vzryva, Vol. 16, No. 2, 1980, pp. 105–109, [English trans., Combustion, Explosion, and Shock Waves, Vol. 16, No. 2, 1980, pp. 227–231].Google Scholar
  25. 25.
    25. Belinets, Yu.M., Dremin, A.N., and Kanel, G.I., “Kinetics of Pressed-TNT Decomposition Behind a Shock Front,” Fizika Goreniya i Vzryva, Vol. 14, No. 3, 1978, pp. 111–116, [English trans., Combustion, Exposion, and Shock Waves, Vol. 14, No. 3, 1978, pp. 361–365].Google Scholar
  26. 26.
    26. Nutt, G.L., and Erickson, L.M., “Reactive Flow Lagrange Analysis in RX-26- AF,” Shock Waves in Condensed Matter - 1983, Asay, J.R., Graham, R.A., and Straub, G.K., eds., Elsevier, Amsterdam, 1984, pp. 605–608.Google Scholar
  27. 27.
    27. Belyaev, A.F., Bobolev, V.K., and Sulimov, A.A., Condensed System De.agration-to-Detonation Transition, Nauka Publ., Moscow, 1973, p. 292.Google Scholar
  28. 28.
    28. Dubovik, A.S., Photographic Recording of Fast Processes, Nauka Publ., Moscow, 1964, p. 467.Google Scholar
  29. 29.
    29. Orlenko, L.P., ed., Physics of Explosion, 3rd Edition, Vol. 1, Fizmatlit Publ., Moscow, 2002.Google Scholar
  30. 30.
    30. Veretennikov, V.A., Dremin, A.N., Rozanov, O.K., and Shvedov, K.K., “Applicability of Hydrodynamic Theory to the Detonation of Condensed Explosives,” Fizika Goreniya i Vzryva, Vol. 3, No. 1, 1967, pp. 3–10, [English trans., Combustion, Explosion, and Shock Waves, Vol. 3, No. 1, 1967, pp. 1–5].Google Scholar
  31. 31.
    31. Jameson, R.L., and Hawkins, A., “Shock Velocity Measurements in Inert Monitors Placed on Several Explosives,” Proc., 5 th International Symposium on Detonation, Aug 18–21, 1970, Pasadena, CA, pp. 23–29.Google Scholar
  32. 32.
    32. Ashaev, V.K., Doronin, G.S., and Levin, A.D., “Detonation Front Structure in Condensed High Explosives,” Fizika Goreniya i Vzryva, Vol. 24, No. 1, 1988, pp. 95–99, [English trans., Combustion, Explosion, and Shock Waves, Vol. 24, No. 1, 1988, pp. 88–92].Google Scholar
  33. 33.
    33. Dremin, A.N., Shvedov, K.K., and Veretennikov, V.A., “Studying Detonation of Ammonit PZhV-20 and Some Other HE,” Explosive Practice, N 52/9, Gosgortekhizdat Publ., Moscow, 1963.Google Scholar
  34. 34.
    34. Dremin, A.N., and Shvedov, K.K., “Estimation of Chapman-Jouget Pressure and Reaction Time in Detonation Wave of Powerful HE, Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 1964, pp. 154–159.Google Scholar
  35. 35.
    35. Zaitsev, V.M., Pokhil, P.F., and Shvedov, K.K., “Measurement of Sound Speed in Detonation Products,” Doklady Akademii Nauk SSSR, Vol. 133, No. 1, 1960, pp. 155–157.Google Scholar
  36. 36.
    36. Dorokhin, V.V., Zubarev, V.N., Orekin, Yu.K., Panov, N.V., and Shaboldina, N.L., “Motion of Explosion Products Behind a Detonation Wave Front,” Fizika Goreniya i Vzryva, Vol. 21, No. 4, 1985, pp. 100–104, [English trans., Combustion, Explosion, and Shock Waves, Vol. 21, No. 4, 1985, pp. 471–474].Google Scholar
  37. 37.
    37. Dorokhin, V.V., Zubarev, V.N., Orekin, Yu.K., Panov, N.V., and Shaboldina, N.L., “Continuous Radiographic Recording for Explosion Products Behind a Detonation Front,” Fizika Goreniya i Vzryva, Vol. 24, No. 1, 1988, pp. 118–122, [English trans., Combustion, Explosion, and Shock Waves, Vol. 24, No. 1, 1988, pp. 109–112].Google Scholar
  38. 38.
    38. Zubarev, V.N., “Structure of Self-Similar Rarefaction Waves and Expansion Adiabats of Substances,” Fizika Goreniya i Vzryva, Vol. 20, No. 3, 1984, pp. 66–67, [English trans., Combustion, Explosion, and Shock Waves, Vol. 20, No. 3, 1984, pp. 307–308].Google Scholar
  39. 39.
    39. Shefield, S.A., Bloomquist, D.D., and Tarver, C.M., “Subnanosecond Measurements of Detonation Fronts in Solid High Explosives,” Journal of Chemical Physics, Vol. 80, No. 8, 1984, pp. 3831–3844.CrossRefGoogle Scholar
  40. 40.
    40. Utkin, A.V., Kanel, G.I., and Fortov, V.E., “Empirical Macrokinetics of the Decomposition of a Desensitized Hexogen in Shock and Detonation Waves,” Fizika Goreniya i Vzryva, Vol. 25, No. 5, 1989, pp. 115–122, [English trans., Combustion, Explosion, and Shock Waves, Vol. 25, No. 5, 1989, pp. 625–632].Google Scholar
  41. 41.
    41. Fedorov, A.V., Menshikh, A.V., and Yagodin, N.V., “Detonation Wave Front Structure of Condensed High Explosives,” Proc., New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, Oxford, UK, 1997, Publ., AWE Hunting BRAE, Aldermaston, UK, 1997, Vol. 2, pp. 830–832.Google Scholar
  42. 42.
    42. Voskoboynikov, I.M., and Gogulya, M.F., “Shock Front Luminosity in Liquid Near the Detonating Charge Interface,” Khimicheskaya Fizika, No. 7, 1984, pp. 1036–1041.Google Scholar
  43. 43.
    43. Evstigneev, A.A., Zhernokletov, M.V., and Zubarev, V.N., “Isentropic Broadening and Equation of State of Trotyl Explosion Products,” Fizika Goreniya i Vzryva, Vol. 12, No. 5, 1976, pp. 758–763, [English trans., Combustion, Explosion, and Shock Waves, Vol. 12, No. 5, 1976, pp. 678–682].Google Scholar
  44. 44.
    44. Zhernokletov, M.V., Zubarev, V.N., and Telegin, G.S., “Expansion Isentropes of the Explosion Products of Condensed Explosives,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 4, 1969, pp. 127–132, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 10, No. 4, 1969, pp. 650–655].Google Scholar
  45. 45.
    45. Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Shock-Wave Phenomena in Condensed Media, Yanus, K. Publ., Moscow, 1996 [see also, Kanel, G.I., Razorenov, S.V., and Fortov, V.E., Shock-Wave Phenomena and the Properties of Condensed Matter, Springer-Verlag, New York, 2004].Google Scholar
  46. 46.
    46. Zubarev, V.N., and Evstigneev, A.A., “Equations of State of the Products of Condensed-Explosive Explosions,” Fizika Goreniya i Vzryva, Vol. 20, No. 6, 1984, pp. 114–126, [English trans., Combustion, Explosion, and Shock Waves, Vol. 20, No. 6, 1984, pp. 699–710].Google Scholar
  47. 47.
    47. Altshuler, L.V., “Use of ShockWaves in High-Pressure Physics,” Uspekhi Fizicheskikh Nauk, Vol. 85, No. 2, 1965, pp. 197–258, [English trans., Soviet Physics Uspekhi, Vol. 8, No. 1, 1965, pp. 52–91].Google Scholar
  48. 48.
    48. Altshuler, L.V., Doronin, G.S., and Zhuchenko, V.S., “Detonation Regimes and Jouguet Parameters of Condensed Explosives,” Fizika Goreniya i Vzryva, Vol. 25, No. 2, 1989, pp. 84–103, [English trans., Combustion, Explosion, and Shock Waves, Vol. 25, No. 2, 1989, pp. 209–224].Google Scholar
  49. 49.
    49. Zababakhin, E.I., Some Problems of the Gasdynamics of Explosions, RFNCVNIITF, Snezhinsk, Russia, 1997, [English trans., RFNC-VNIITF, Snezhinsk, Russia, 2001].Google Scholar
  50. 50.
    50. Azbukina, I.N., Belyaev, A.F., “Estimation of Cuto. Diameters with the Method of Cones,” Physics of Explosion. Collected Papers N3., USSR Academy of Sciences Publishing House, Moscow, 1955.Google Scholar
  51. 51.
    51. Baum, F.A., Derzhavets, A.S., and Duvanova, Zh.M., “Detonation Ability of HE Designed for Operations in Deep Wells,” Explosive Practice 63/20., Nedra Publ., Moscow, 1967, pp. 251–259.Google Scholar
  52. 52.
    52. Ramsay, J.B., “Effect of Confinement on Failure in 95 TATB/5 Kel-F,” Proc., 8 th International Symposium on Detonation, Jul. 15–19, 1985, Albuquerque, NM, pp. 372–379.Google Scholar
  53. 53.
    53. Belyaev, A.F., and Kurbangalina, R.Kh., “Effect of Initial Temperature on Nitroglycerine and a Trinitrotoluene Cuto. Diameter,” Zhurnal Fizicheskoy Khimii, Vol. 34, No. 3, 1960, pp. 603–610.Google Scholar
  54. 54.
    54. Price, D., “Shock Sensitivity, A Property of Many Aspects,” Proc., 5 th International Symposium on Detonation, Aug. 18–21, 1970, Pasadena, CA, pp. 207–217.Google Scholar
  55. 55.
    55. Apin, A.Ya., and Velina, N.F., “On Cuto. Diameters of Explosive Single Crystal Detonation,” Proc., 2 nd All-Union Symposium on Combustion and Detonation,” Chernogolovka, 1969.Google Scholar
  56. 56.
    56. Andreev, K.K., and Belyaev, A.F., Theory of High Explosives, Oborongiz Publishers, Moscow, 1960.Google Scholar
  57. 57.
    57. Apin, A.Ya., Bardin, E.P., and Velina, N.F., “Influence of High Explosive Density and Composition on Explosion Impulse,” in Explosive Practice N 52/9, Gosgortekhizdat Publ., Moscow, 1963, pp. 90–102.Google Scholar
  58. 58.
    58. Kuznetsov, V.M., and Shatsukevich, A.F., “The Eficiency of Explosives,” Fizika Goreniya i Vzryva, Vol. 14, No. 2, 1978, pp. 120–125, [English trans., Combustion, Explosion, and Shock Waves, Vol. 14, No. 2, 1978, pp. 235–239].Google Scholar
  59. 59.
    59. Dubnov, L.V., Bakharevich, N.S., and Romanov, A.I., Industrial High Explosives, Nedra Publishers, Moscow, 1988.Google Scholar
  60. 60.
    60. Altshuler, L.V., Kormer, S.B., Brazhnik, M.I., Vladimirov, L.A., Speranskaya, M.P., and Funtikov, A.I., Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 38, 1960, pp. 1061–1073, [English trans., Soviet Physics JETP, Vol. 11, No. 4, 1960, pp. 766–775].Google Scholar
  61. 61.
    61. Smirnov, S.P., Kolganov, E.V., Kulakevich, Ya.S., et al., “Relation of the Launching Action of Mix and Individual HE to Their Composition and Structure,” in Advanced Methods for Designing and Verification of Rocket-Artillery Arms, RFNC-VNIIEF, Sarov, Russia, 2000, pp. 410–412.Google Scholar
  62. 62.
    62. Akst, I.B., “Heat of Detonation, the Cylinder Test, and Performance in Munitions,” Proc., 9 th International Symposium on Detonation, Aug 28 - Sep 1, 1989, Portland, OR, pp. 478–488.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • V.M. Belsky
  • M.V. Zhernokletov

There are no affiliations available

Personalised recommendations