Advertisement

Studies of Phase Transformations

  • B.L. Glushak
  • M.A . Mochalov
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

Depending upon thermodynamic state, materials can exist in a number of different physical phases (e.g., solid, liquid, or gas). Under certain conditions of temperature and pressure, it is possible (for some solids) to transition from one crystalline structure to another. Such transformations in solid materials are referred to as polymorphic transformations. Polymorphic transformations, melting and evaporation of solids are first-order phase transitions. Shock waves can be used to produce a wide range of material states (P, V, T) and establish the conditions for proceeding from one phase to another.

Keywords

Shock Front Shock Compression Polymorphic Transition Liquid Argon Free Surface Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Funtikov, A.I., and Pavlovskii, M.N., “Shock Compression of Solid Bodies and Polymorphous Transformations. Shock Waves in Solid Bodies,” in Shock Waves and Extreme States of Matter, Nauka Publ., Moscow, 2000, pp. 138–159 [see also, Funtikov, A.I., and Pavlovsky, M.N., “ShockWaves and Polymorphic Phase Transformations in Solids,” in Fortov, V.E., Altshuler, L.V., Trunin, R.F., and Funtikov, A.I., High Pressure Shock Compression of Solids VII, Springer-Verlag, New York, 2004, pp. 197–223].Google Scholar
  2. 2.
    2. Altshuler, L.V., “Phase Transitions in Shock Waves,” Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1978, No. 4, pp. 93–103, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 19, No. 4, 1978, pp. 496–505].Google Scholar
  3. 3.
    3. Altshuler, L.V., “Use of ShockWaves in High-Pressure Physics,” Uspekhi Fizicheskikh Nauk, Vol. 85, No. 2, 1965, pp. 197–258, [English trans., Soviet Physics Uspekhi, Vol. 8, No. 1, 1965, pp. 52–91].Google Scholar
  4. 4.
    4. Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Shock Wave Phenomena in Condensed Matter, Yanuk-K Publ., Moscow, 1996, [see also, Kanel, G.I., Razorenov, S.V., and Fortov, V.E., Shock-Wave Phenomena and the Properties of Condensed Matter, Springer-Verlag, New York, 2004].Google Scholar
  5. 5.
    5. Kuznetsov, N.M., “Shock Compression of Solid Bodies and Polymorphous Transformations. Some Issues of Polymorphous Transformations in Shock Waves,” in Shock Waves and Extreme States of Matter, Nauka Publ., Moscow, 2000, pp. 174–198 [see also, Kuznetsov, N.M., “Some Questions of Phase Transition in Shock Waves,” in Fortov, V.E., Altshuler, L.V., Trunin, R.F., and Funtikov, A.I., High-Pressure Shock Compression of Solids VII, Springer-Verlag, New York, 2004, pp. 247–273].Google Scholar
  6. 6.
    6. Zeldovich, Ya.B., and Raizer, Yu.P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Nauka Publ., Moscow, 1966, [English trans. Academic Press, NY, Vol. 1 (1966), Vol. 2 (1967); Reprinted in a single volume by Dover Publ., Mineola, NY 2002].Google Scholar
  7. 7.
    7. Novikov, S.A., Divnov, I.I., and Ivanov, A.G., “Investigation of the Structure of Compressive Shock Waves in Iron and Steel,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 47, No. 3, 1964, pp. 814–816, [English trans., Soviet Physics JETP, Vol. 20, No. 3, 1965, pp. 545–546].Google Scholar
  8. 8.
    8. Ivanov, A.G., and Novikov, S.A., “Rarefaction Shock Waves in Iron and Steel,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 40, No. 6, 1961, pp. 1880–1882, [English trans., Soviet Physics JETP, Vol. 13, No. 6, 1961, pp. 1321–1323].Google Scholar
  9. 9.
    9. Ivanov, A.G., Novikov, S.A., and Tarasov, Yu.I., “Fragmentation Phenomena in Iron and Steel Caused by Explosive Shock Wave Interactions,” Fizika Tverdogo Tela, Vol. 4, No. 1, 1962, pp. 249–260, [English trans., Soviet Physics - Solid State, Vol. 4, No. 1, 1962, pp. 177–185].Google Scholar
  10. 10.
    10. Funtikov, A.I., “Shock Compression of Solid Bodies. Iron Phase Diagram,” in Shock Waves and Extreme States of Matter, Nauka Publ., Moscow, 2000, pp. 160–173 [see also, Funtikov, A.I., “Phase Diagram of Iron,” in Fortov, V.E., Altshuler, L.V., Trunin, R.F., and Funtikov, A.I., High-Pressure Shock Compression of Solids VII, Springer-Verlag, New York, 2004, pp. 226–246].Google Scholar
  11. 11.
    11. Batkov, Yu.V., German, V.N., Osipov, R.S., Novikov, S.A., and Tsyganov, V.A., “Melting of Lead in Shock Compression,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1988, No. 1, pp. 149–151, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 29, No. 1, 1988, pp. 139–141].Google Scholar
  12. 12.
    12. Altshuler, L.V., Bakanova, A.A., Bushman, A.V., Dudoladov, I.P., and Zubarev, V.N., “Evaporation of Shock-Compressed Lead in Release Waves,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 73, 1977, pp. 1866–1872, [English trans., Soviet Physics JETP, Vol. 46, No. 5, 1977, pp. 980–983].Google Scholar
  13. 13.
    13. Bakanova, A.A., Dudoladov, I.P., Zhernokletov, M.V., Zubarev, V.N., and Simakov, G.V., “Vaporization of Shock-Compressed Metals on Expansion,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1983, No. 2, pp. 76–81, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 24, No. 2, 1983, pp. 204–209].Google Scholar
  14. 14.
    14. Bushman, A.V., Glushak, B.L., Gryaznov, V.K., Zhernokletov, M.V., Krasyuk, I.K., Pashinin, P.P., Prokhorov, A.M., Ternovoi, V.Ya., Filimonov, A.S., and Fortov, V.E., “Shock Compression and Adiabatic Decompression of a Dense Bismuth Plasma at Extreme Thermal Energy Densities,” Pisma, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 44, No. 8, 1986, pp. 375–377, [English trans., JETP Letters, Vol. 44, No. 8, 1986, pp. 480–483].Google Scholar
  15. 15.
    15. Altshuler, L.V., and Bakanova, A.A., “Electronic Structure and Compressibility of Metals at High Pressures,” Uspekhi Fizicheskikh Nauk, Vol. 96, No. 2, 1968, pp. 193–215, [English trans., Soviet Physics Uepekhi, Vol. 11, No. 5, 1969, pp. 678–689].Google Scholar
  16. 16.
    16. Brish, A.A., Tarasov, M.S., and Tsukerman, V.A., “Electrical Conductivity of Dielectrics in Strong Shock Waves,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 38, 1960, pp. 22–25, [English trans., Soviet Physics JETP, Vol. 11, No. 1, 1960, pp. 15–17].Google Scholar
  17. 17.
    17. Brish, A.A., Tarasov, M.S., and Tsukerman, V.A., “Electric Conductivity of the Explosion Products of Condensed Explosives,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 37, 1959, pp. 1544–1550, [English trans., Soviet Physics JETP, Vol. 10, No. 6, 1960, pp. 1095–1100].Google Scholar
  18. 18.
    18. Alder, B.J., and Christian, R.H., “Metallic Transition in Ionic and Molecular Crystals,” Physical Review, Vol. 104, No. 2–15, 1956, pp. 550–551.CrossRefGoogle Scholar
  19. 19.
    19. Altshuler, L.V., Kuleshova, L.V., and Pavlovskii, M.N., “The Dynamic Compressibility, Equation of State, and Electrical Conductivity of Sodium Chloride at High Pressures,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 39, 1960, pp. 16–24, [English trans., Soviet Physics JETP, Vol. 12, No. 1, 1961, pp. 10–15].Google Scholar
  20. 20.
    20. Grigorev, F.V., Kirillov, G.A., Kormer, S.V., et al., “Study of Shock-Compressed Ionic Crystal Electric Conductivity and Absorption in 150-800 kbar Pressure Range,” proc., 2 nd All-Russian Symposium on Combustion and Explosion, Yerevan, 1965, pp. 259–262.Google Scholar
  21. 21.
    21. Grigorev, F.V., Kirillov, G.A., Kormer, S.V., et al., “Compressibility, Temperature, Electric Conductivity, and Absorptivity of Shock-Compressed Carbon Tetrachloride,” proc., 2 nd All-Russian Symposium on Combustion and Explosion, Yerevan, 1965, pp. 255–257.Google Scholar
  22. 22.
    22. Kormer, S.B., Sinitsyn, M.V., Kirillov, G.A., and Popova, L.T., “An Experimental Determination of the Light Absorption Coeffcient in Shock-Compressed NaCl. The Absorption and Conductivity Mechanism,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 49, 1965, pp. 135–147, [English trans., Soviet Physics JETP, Vol. 22, No. 1, 1966, pp. 97–105].Google Scholar
  23. 23.
    23. van Thiel, M., and Alder, B.J., “Shock Compression of Argon,” Journal of Chemical Physics, Vol. 44, No. 3, 1966, pp. 1056–1065.CrossRefGoogle Scholar
  24. 24.
    24. Nelson, D.A., Jr., and Ruo., A.L., “Metallic Xenon at Static Pressures,” Physical Review Letters, Vol. 42, No. 6, 1979, pp. 383–386.CrossRefGoogle Scholar
  25. 25.
    25. Radousky, H.B., Nellis, W.J., Ross, M., Hamilton, D.C., and Mitchell, A.C., “Molecular Dissociation and Shock-Induced Cooling in Fluid Nitrogen at High Densities and Temperatures,” Physical Review Letters, Vol. 57, No. 19, 1986, pp. 2419–2422.CrossRefGoogle Scholar
  26. 26.
    26. Nellis, W.J., Radousky, H.B., Hamilton, D.C., Mitchell, A.C., Holmes, N.C., Christianson, K.B., and van Thiel, M., “Equation-of-State, Shock-Temperature, and Electrical-Conductivity Data of Dense Fluid Nitrogen in the Region of the Dissociative Phase Transition,” Journal of Chemical Physics, Vol. 94, No. 3, 1991, pp. 2244–2257.CrossRefGoogle Scholar
  27. 27.
    27. Gatilov, L.A., Glukhodedov, V.D., Grigorev, F.V., Kormer, S.B., Kuleshova, L.V., and Mochalov, M.A., “Electrical Conductivity of Shock Compressed Condensed Argon at Pressures from 20 to 70 GPa,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1985, No. 1, pp. 99–102, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 26, No. 1, 1985, pp. 88–91].Google Scholar
  28. 28.
    28. Mochalov, M.A., Glukhodedov, V.D., Kirshanov, S.I., and Lebedeva, T.S., “Electric Conductivity of Liquid Argon, Krypton, and Xenon Under Shock Compression up to Pressure of 90 GPa,” Shock Compression of Condensed Matter - 1999, Furnish, M.D., Chhabildas, L.C., and Hixson, R.S., eds., AIP Press, Melville, NY, 2000.Google Scholar
  29. 29.
    29. Urlin, V.D., Mochalov, M.A., and Mikhailova, O.L., “Liquid Xenon Study Under Shock and Quasi-Isentropic Compression,” High Pressure Research, Vol. 8, No. 4, 1992, pp. 595–605.CrossRefGoogle Scholar
  30. 30.
    30. Hamilton, D.C., Nellis, W.J., Mitchell, A.C., Ree, F.H., and van Thiel, M., “Electrical Conductivity and Equation of State of Shock-Compressed Liquid Oxygen,” Journal of Chemical Physics, Vol. 88, No. 8, 1988, pp. 5042–5050.CrossRefGoogle Scholar
  31. 31.
    31. Weir, S.T., Mitchell, A.C., and Nellis, W.J., “Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar),” Physical Review Letters, Vol. 76, No. 11, 1996, pp. 1860–1863.CrossRefGoogle Scholar
  32. 32.
    32. Kiler, R., “Electric Conductivity of Condensed Matter at High Pressures,” in High Energy Density Physics, Mir Publ., Moscow, 1974.Google Scholar
  33. 33.
    33. Kuleshova, L.V., “Electrical Conductivity of Boron Nitride, Potassium Chloride, and Polytetraflouroethylene Behind a Shock-Wave Front,” Fizika Tverdogo Tela, Vol. 11, No. 5, 1969, pp. 1085–1091, [English trans., Soviet Physics - Solid State, Vol. 11, No. 5, 1969, pp. 886–890].Google Scholar
  34. 34.
    34. Kuleshova, L.V., and Pavlovskii, M.N., “Dynamic Compressibility, Electrical Conductivity, and Sound Velocity Behind a Shock Front in Kaprolon,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1977, No. 5, pp. 122–126, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 18, No. 5, 1977, pp. 689–692].Google Scholar
  35. 35.
    35. Gatilov, L.A., and Kuleshova, L.V., “Measurement of High Electrical Conductivity in Shock-Compressed Dielectrics,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1981, No. 1, pp. 136–140, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 22, No. 1, 1981, pp. 114–117].Google Scholar
  36. 36.
    36. Huang, S.S., and Freeman, G.R., “Effect of Density on the Total Ionization Yields in X-Irradiated Argon, Krypton, and Xenon,” Canadian Journal of Chemistry, Vol. 55, No. 11, 1977, pp. 1838–1845.CrossRefGoogle Scholar
  37. 37.
    37. Asaf, U., and Steinberger, I.T., “Photoconductivity and Electron Transport Parameters in Liquid and Solid Xenon,” Physical Review B, Vol. 10, No. 10, 1974, pp. 4464–4468.CrossRefGoogle Scholar
  38. 38.
    38. Glukhodedov, V.D., Kirshanov, S.I., Lebedeva, T.S., and Mochalov, M.A., “Properties of Shock-Compressed Liquid Krypton at Pressures of up to 90 GPa,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 116, No. 2, 1999, pp. 551–562, [English trans., Journal of Experimental and Theoretical Physics, Vol. 89, No. 2, 1999, pp. 292–298].Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • B.L. Glushak
  • M.A . Mochalov

There are no affiliations available

Personalised recommendations