Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 2279 Accesses

Abstract

Diagnostic methods for obtaining quantification of the field variables that are important in understanding the physics of fast time-dependent processes, such as the thermomechanical processes associated with shock waves, have their own particular features. These features grow out of the demands of the challenging environment within which the measurements must be taken. The data must be taken within a very short time period; the diagnostic device should be remote since destruction is inevitable in an explosion or impact; and the measurements should be as complete as possible since it is impossible to return a system (assembly, sample) to its original state in order to check the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Altshuler, L.V., “Use of ShockWaves in High-Pressure Physics,” Uspekhi Fizicheskikh Nauk, Vol. 85, No. 2, 1965, pp. 197–258, [English trans., Soviet Physics Uspekhi, Vol. 8, No. 1, 1965, pp. 52–91].

    Google Scholar 

  2. 2. Graham, R.A., and Asay, J.R., “Measurements ofWave Profiles in Shock-Loaded Solids,” High Temperatures - High Pressures, Vol. 10, No. 4, 1978, pp. 355–390

    Google Scholar 

  3. 3. Keeler, R.N., and Royce, E.B., “Shock Waves in Condensed Media,” in Proc., International School of Physics “Enrico Fermi”, Course XLVIII, Physics of High Energy Density, Caldirola, P., and Knoepfel, H., eds., Academic Press, New York, 1971, pp. 51–150, [Russian trans., Mir Publ., Moscow, 1974, pp. 60–170].

    Google Scholar 

  4. 4. Mineev, V.N., and Ivanov, A.G., “Electromotive Force Produced by Shock Compression of a Substance,” Uspeki Fizicheskikh Nauk, Vol. 119, No. 1, 1976, pp. 75–109, [English trans., Soviet Physics Uspekhi, Vol. 19, No. 5, 1976, pp. 400–419].

    Google Scholar 

  5. 5. Glushak, B.L., Zharkov, A.P., Zhernokletov, M.V., Ternovoi, V.Ya., Filimonov, A.S., and Fortov, V.E., “Experimental Investigation of the Thermodynamics of Dense Plasmas Formed from Metals at High Energy Concentrations,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 96, No. 4, 1989, pp. 1301–1318, [English trans., Soviet Physics JETP, Vol. 69, No. 4, 1989, pp. 739–749].

    Google Scholar 

  6. 6. Ashaev, V.K., Doronin, G.S., and Levin, A.D., “Detonation Front Structure in Condensed High Explosives,” Fizika Goreniya i Vzryva, Vol. 24, No. 1, 1988, pp. 95–99, [English trans., Combustion, Explosion, and Shock Waves, Vol. 24, No. 1, 1988, pp. 88–92].

    Google Scholar 

  7. 7. Gatilov, L.A., Ibragimov, R.A., and Kudashov, A.V., “Structure of a Detonation Wave in Cast TNT,” Fizika Goreniya i Vzryva, Vol. 25, No. 2, 1989, pp. 82–84, [English trans., Combustion, Explosion and Shock Waves, Vol. 25, No. 2, 1989, pp. 206–208].

    Google Scholar 

  8. 8. Trunin, R.F., (ed.), Properties of Condensed Materials at High Pressures, RFNC-VNIIEF, Sarov, Russia, 1992.

    Google Scholar 

  9. 9. Bancroft, D., Peterson, E.L., and Minshall, S., “Polymorphism of Iron at High Pressure,” Journal of Applied Physics, Vol. 27, No. 3, 1956, pp. 291–298.

    Article  Google Scholar 

  10. 10. Kurakin, N.I., Danilenko, V.V., Kozurek, N.P., et al., “Electrocontact Method for Recording x - t Diagrams,” Khimicheskaya Fizika, 1993, No. 5.

    Google Scholar 

  11. 11. Poplavko, Yu.M., Physics of Dielectrics, Vyshcha Shkola Publ., Kiev, 1980.

    Google Scholar 

  12. 12. Borisenok, V.A., Morozov, V.A., Novitsky, E.Z., et al., “Dynamic Compressibility of Single Crystal ADTGS and its Electrical Response to Shock Action,” Kristallografiya, Vol. 37, No. 4, 1992, pp. 971–978.

    Google Scholar 

  13. 13. Lee, L.M., Williams, W.D., Graham, R.A., and Bauer, F., “Studies of the Bauer Piezoelectric Polymer Gauge (PVF2) Under Impact Loading,” Shock Waves in Condensed Matter - 1985, Gupta, Y.M., ed., Plenum Press, NY, 1986, pp. 497–502.

    Google Scholar 

  14. 14. Borisenok, V.A., Morosov, V.A., and Novitsky, E.Z., “PVDF as a Working Medium of Shock Wave Gauges,” proc., 10 th Int. Conf. High Energy Rate Fabrication, Lubljana, Yugoslavia, 1989, pp. 428–430.

    Google Scholar 

  15. 15. Dubovik, A.S., Photographic Recording of Fast Processes, Nauka Publ., Moscow, 1964, p. 341.

    Google Scholar 

  16. 16. Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Shock-Wave Phenomena in Condensed Matter, Yanus-K Publ., Moscow, 1996, [see also, Kanel, G.I., Razorenov, S.V., and Fortov, V.E., Shock-Wave Phenomena and the Properties of Condensed Matter, Springer-Verlag, New York, 2004].

    Google Scholar 

  17. 17. Salamandra, G.D., Photographic Methods for the Study of Fast Processes, Nauka Publ., Moscow, 1974.

    Google Scholar 

  18. 18. Danilenko, V.V., Kozeruk, N.P., and Telichko, I.V., “Fiber-Optic Sensors for Gas Dynamics Studies,” in Fast HE Initiation. Peculiar Detonation Conditions, Tarzhanov, V.I., ed., RFNC-VNIITF, Snezhinsk, Russia, 1998, pp. 145–153.

    Google Scholar 

  19. 19. Kozeruk, N.P., “Optical Signal Generation in Fiber-Optic Measurement Systems in Shock Phenomena Diagnostics,” in Fast HE Initiation. Peculiar Detonation Conditions, Tarzhanov, V.I., ed., RFNC-VNIITF, Snezhinsk, Russia, 1998, pp. 154–166.

    Google Scholar 

  20. 20. Danilenko, V.V., and Kozeruk, N.P., “On Errors in Time Interval Measurements with Streak Camera SFR-2M,” Zhurnal Nauchnoyi i Prikladnoy Fotografii i Kinematografii, Vol. 34, No. 5, 1989, pp. 335–340.

    Google Scholar 

  21. 21. Bolotov, A.A., and Chernyshev, V.K., “A Method for Producing Calibrated High Frequency Light Pulses for Time Scaling on Working Frame of Ultrahigh- Speed Photorecorders,” in Filming Technology, Its Use in the Industry and Research. Collected Papers, No. 2, Moscow, 1966.

    Google Scholar 

  22. 22. Bolotov, A.A., Lovyagin, B.M., Manulov, N.A., and Sakkeus, I.K., “50-Channel Light-Pulse Generator,” Pribory i Tekhnika Eksperimenta, 1975, No. 3, pp. 198–200, [English trans., Instruments and Experimental Techniques, Vol. 18, No. 3, Part 2, 1975, pp. 909–911].

    Google Scholar 

  23. 23. Bolotov, A.A., Lovyagin, B.M., and Ilyin, N.V., “Timer DV-2 to SFR type Photorecorder,” Zhurnal Nauchnoy i Prikladnoy Fotografii i Kinematografii, 1977, No. 6, pp. 415–419.

    Google Scholar 

  24. 24. Kholm, R., Electrical Contacts, Izdatelstvo Inostrannoy Literatury Publ., Moscow, 1961.

    Google Scholar 

  25. 25. Ivanov, A.G., and Novikov, S.A., “Capacitive Data Transmitter Method for Recording the Instantaneous Velocity of Moving Surfaces,” Pribory i Tekhnika Eksperimenta, 1963, No. 1, pp. 135–138, [English trans., Instruments and Experimental Techniques, 1963, No. 1, pp. 128–131].

    Google Scholar 

  26. 26. Ivanov, A.G., Novikov, S.A., and Sinitsyn, V.A., “Investigation of Elastic-Plastic Waves in Explosively Loaded Iron and Steel,” Tverdogo Tela, Vol. 5, No. 1, 1963, pp. 269–278, [English trans., Soviet Physics - Solid State, Vol. 5, No. 1, 1963, pp. 196–202].

    Google Scholar 

  27. 27. Zaitsev, V.M., Pokhil, P.F., and Shvedov, K.K., “Electomegnetic Method for Measurement of Explosion Product Velocity,” Doklady Akademii Nauk SSSR, Vol. 132, No. 6, 1960, pp. 1339–1340.

    Google Scholar 

  28. 28. Dremin, A.N., Savrov, S.D., Trofimov, V.S., and Shvedov, K.K., Detonation Waves in Condensed Matter, Nauka Publ., Moscow, 1970, p. 169.

    Google Scholar 

  29. 29. Zubarev, V.N., “The Motion of Explosion Products Behind the Front of a DetonationWave,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1965, No. 2, pp. 54–61, [English trans., Journal of Applied Mechanics and Technical Physics, 1965, No. 2, pp. 45–50].

    Google Scholar 

  30. 30. Urtiew, P.A., Erickson, L.M., Hayes, B., and Parker, N.L., “Pressure and Particle Velocity Measurements in Solids Subjected to Dynamic Loading,” Fizika Goreniya i Vzryva, Vol. 22, No. 5, 1986, pp. 113–126, [English trans., Combustion, Explosion, and Shock Waves, Vol. 22, No. 5, 1986, pp. 597–614].

    Google Scholar 

  31. 31. Ko, J.F., “Improper Utilization of Electomagnetic Velocimeters in High Explosives,” Khimicheskaya Fizika, 1995, No. 12, pp. 68–77.

    Google Scholar 

  32. 32. Kheis, B., “A System for Nanosecond-Resolution Measurements of Material Particles in Shock and Detonation Waves,” Pribory dlya Nauchnykh Issledovaniya, 1981, No. 4, pp. 92–102.

    Google Scholar 

  33. 33. Altshuler, L.V., Pavlovskii, M.N., and Drakin, V.P., “Peculiarities of Phase Transitions in Compression and Rarefaction Shock Waves,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 52, No. 2, 1967, pp. 400–408, [English trans., Soviet Physics JETP, Vol. 25, No. 2, 1967, pp. 260–265].

    Google Scholar 

  34. 34. Fritz, J.N., and Morgan, J.A., “An Electromagnetic Technique for Measureing Material Velocity,” Review of Scientific Instruments, Vol. 44, No. 2, 1973, pp. 215–221.

    Article  Google Scholar 

  35. 35. Novikov, S.A., Kashintsov, V.I., Fedotkin, A.S., Sinitsyn, V.A., Bodrenko, S.I., and Koltunov, O.I., “Measurement of the Velocities of Current-Conducting Shells with a Sensor of the Electromagnetic Type,” Fizika Goreniya i Vzryva, Vol. 22, No. 1, 1986, pp. 71–74, [English trans., Combustion, Explosion, and Shock Waves, Vol. 22, No. 1, 1986, pp. 67–70].

    Google Scholar 

  36. 36. Zhugin, Yu.N., and Krupnikov, K.K., “Induction Method of Continuous Recording of the Velocity of a Condensed Medium in Shock-Wave Processes,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1983, No. 1, pp. 102–108, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 24, No. 1, 1983, pp. 88–93].

    Google Scholar 

  37. 37. Graham, R.A., Solids Under High-Pressure Shock Compression, Springer-Verlag, New York, 1993.

    Google Scholar 

  38. 38. Astanin, V.V., Mineev, V.N., Obukhov, A.S., and Romanchenko, V.I., Electric Measurements of Shock Wave Parameters with Manometric Sensors: Preprint. Institute of Strength Problems, Kiev, 1985.

    Google Scholar 

  39. 39. Novitskii, E.Z., Korotchenko, M.V., Volnyanskii, M.D., and Borisenok, V.A., “Investigation of the Dynamic Piezoelectric Moduli of Single Crystals of Bi12GeO20, Li2 GeO3, and LiNbO3,” Fizika Goreniya i Vzryva, Vol. 16, No. 1, 1980, pp. 99–105, [English trans., Combustion, Explosion, and Shock Waves, Vol. 16, No. 1, 1980, pp. 93–98].

    Google Scholar 

  40. 40. Graham, R.A., Neilson, F.W., and Benedick, W.B., “Piezoelectric Current from Shock-Loaded Quartz - A Submicrosecond Stress Gauge,” Journal of Applied Mechanics, Vol. 36, No. 5, 1965, pp. 1775–1783.

    Google Scholar 

  41. 41. Davison, L., and Graham, R.A., Physics Reports, Vol. 55, No. 4, 1979, pp. 255–379.

    Article  Google Scholar 

  42. 42. Bauer, F., “Ferroelectric Properties and Shock Response of a Poled PVF2 Polymer and of VF2/C2F3H Copolymers,” Shock Waves in Condensed Matter - 1985, Gupta, Y.M., ed., Plenum Press, NY, 1986, pp. 483–496.

    Google Scholar 

  43. 43. Bauer, F., “PVF2 Polymers: Ferroelectric Polarization and Piezoelectric Properties Under Dynamic Pressure and Shock Wave Action,” Ferroelectrics, Vol. 49, Nos. 1-4, 1983, pp. 231–240.

    Google Scholar 

  44. 44. Lee, L.M., Williams, W. D., Graham, R.A., and Bauer, F., “Studies of the Bauer Piezoelectric Polymer Gauge (PVF2) Under Impact Loading,” Shock Waves in Condensed Matter - 1985, Gupta, Y.M., ed., Plenum Press, NY, 1986, pp. 497–502.

    Google Scholar 

  45. 45. Graham, R.A., Bauer, F., and Anderson, M.V., “Properties of the Piezoelectric Polymer PVDF film under High Pressure Shock Compression,” in Book of Abstracts, ISAF-90, 1990, p. 883.

    Google Scholar 

  46. 46. Graham, R.A., Anderson, M.U., Bauer, F., and Setchell, R.E., “Piezoelectric Polarization of the Ferroelectric Polymer PVDF from 10 MPa to 10 GPa: Studies of Loading-Path Dependence,” Shock Compression of Condensed Matter - 1991, Schmidt, S.C., Dick, R.D., Forbes, J.W., and Tasker, D.G., eds., Elsevier, Amsterdam, 1992, pp. 883–886.

    Google Scholar 

  47. 47. Bauer, F., Graham, R.A., Anderson, M.U., Lefebvre, H., Lee, L.M., and Reed, R.P., “Response of the Piezoelectric Polymer PVDF to Shock Compression Greater than 10 GPa,” Shock Compression of Condensed Matter - 1991, Schmidt, S.C., Dick, R.D., Forbes, J.W., and Tasker, D.G., eds., Elsevier, Amsterdam, 1992, pp. 887–890.

    Google Scholar 

  48. 48. Reed, R.P., Graham, R.A., Moore, L.M., Lee, L.M., Fogelson, D.J., and Bauer, F., “The Sandia Standard for PVDF Shock Sensors,” Shock Compression of Condensed Matter - 1989, Schmidt, S.C., Johnson, J.N., and Davison, L.W., eds., Elsevier, Amsterdam, 1990, pp. 825–828.

    Google Scholar 

  49. 49. Bauer, F., “Properties of Ferroelectric Polymers Under High Pressure and Shock Loading,” Nuclear Instruments and Methods in Physics Research B, Vol. 105, Nos. 1–4, 1995, pp. 212–216.

    Article  Google Scholar 

  50. 50. Bauer, F., “PVDF Gauge Piezoelectric Response Under Two-Stage light Gas Gun Impact Loading,” Shock Compression of Condensed Matter - 2001, Furnish, M.D., Thadhani, N.N., and Horie, Y., eds., AIP Press, Melville, NY, 2002, pp. 1149–1152.

    Google Scholar 

  51. 51. Hodges, R.V., McCoy, L.E., and Toolson, J.R., “Polyvinylidene Floride (PVDF) Gauges for Measurement of Output Pressure of Small Ordnance Devices,” Propellants, Explosives, Pyrotechnics, Vol. 25, No. 1, 2000, pp. 13–18.

    Article  Google Scholar 

  52. 52. Chartagnac, P., Decaso, P., Jimenez, B., Bouchu, M., Cavailler, C., Delaval, J., “Dynamic Behaviour of PVF2 Gauges in the 0-600 kbar Range,” Shock Compression of Condensed Matter - 1991, Schmidt, S.C., Dick, R.D., Forbes, J.W., and Tasker, D.G., eds., Elsevier, Amsterdam, 1992, pp. 893–896.

    Google Scholar 

  53. 53. Fuller, P.J.A., and Price, J.H., “Electrical Conductivity of Manganin and Iron at High Pressures,” Nature, Vol. 193, No. 4812, 1962, pp. 262–263.

    Article  Google Scholar 

  54. 54. Khristoforov, B.D., Goller, E.E., Sidorin, A.Ya., and Livshits, L.D., “Manganin Probe for Measuring Shock Pressures in Solids,” Fizika Goreniya i Vzryva, 1971, No. 4, pp. 613–615, [English trans., Combustion, Explosion, and Shock Waves, Vol. 7, No. 4, 1971, pp. 525–527.

    Google Scholar 

  55. 55. Kanel, G.I., “Using Manganin Sensors for Measurement of Condensed Matter Shock Compression Pressure, VINITI, N 477–74 Dep. 1974.

    Google Scholar 

  56. 56. Dremin, A.N., and Kanel, G.I., “Compression and Rarefaction Waves in Shock- Compressed Metals,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1976, No. 2, pp. 146–153, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 17, No. 2, 1976, pp. 263–267.

    Google Scholar 

  57. 57. Batkov, Yu.V., Novikov, S.A., Sinitsyna, L.M., and Chernov, A.V., “Study of Shear Stresses in Metals at a Shock Front,” Problemy Prochnosti, 1981, No. 5, pp. 56–59 [English trans., Strength of Materials, Vol. 13, No. 5, 1981, pp. 601–605].

    Google Scholar 

  58. 58. Lyle, J.W., Schriever, R.L., and McMillan, A.R., “Dynamic Piezoresistive Coefficient of Manganin to 392 kbar,” Journal of Apllied Mechanics, Vol. 40, No. 11, pp. 4663–4664.

    Google Scholar 

  59. 59. Kanel, G.I., Vakhitova, G.G., and Dremin, A.N., “Metrological Characteristics of Manganin Pressure Pickups Under Conditions of Shock Compression and Unloading,” Fizika Goreniya i Vzryva, Vol. 14, No. 2, 1978, pp. 130–135, [English trans., Combustion, Explosion, and Shock Waves, Vol. 14, No. 2, 1978, pp. 244–248].

    Google Scholar 

  60. 60. Grady, D.E., and Ginsberg, M.J., “Piezoresistive Effects in Ytterbium Stress Transducers,” Journal of Applied Physics, Vol. 48, No. 6, 1977, pp. 2179–2181.

    Article  Google Scholar 

  61. 61. Fot, N.A., Alekseevskii, V.P., and Yarosh, V.V., “Dielectric Pulsed-Pressure Pickup,” Pribory i Tekhnika Eksperimenta, 1973, No. 2, pp. 199–201, [English trans., Instruments and Experimental Techniques, Vol. 16, No. 2, Part 2, 1973, pp. 567–569.

    Google Scholar 

  62. 62. Stepanov, G.V., Elastic-Plastic Material Deformation Under Action of Pulsed Loads, Naukova Dumka Publ., Kiev, 1979.

    Google Scholar 

  63. 63. Batkov, Yu.V., Novikov, S.A., Permyakov, V.V., and Chernov, A.V., “Peculiarities in Measurement of Pressure Pulses with a Dielectric Sensor,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1981, No. 2, pp. 103–105, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 22, No. 2, 1981, pp. 227–228].

    Google Scholar 

  64. 64. Tyunyaev, Yu.N., Mineev, V.N., and Lisitsyn, Yu.V., “Threshold Type Polarization Sensor for Pulsed Pressure Measurement,” proc., 1 st All-Union Symposium on Pulsed Pressures, VNIIFTRI, Moscow, 1974, pp. 53–56.

    Google Scholar 

  65. 65. Ivanov, A.G., Lisitsyn, Yu.V., and Novitskii, E.Z., “Polarization of Dielectrics Under Shock Load,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 54, No. 1, 1968, pp. 285–291, [English trans., Soviet Physics JETP, Vol. 27, No. 1, 1968, pp. 153–155].

    Google Scholar 

  66. 66. Lebedev, N.N., Model, I.Sh., and Kuznetsov, F.O., “Recording of the Velocity of High-Intensity Shock Waves with Piezoelectric Transducers,” Pribory i Tekhnika Eksperimenta, 1968, No. 3, pp. 183–185, [English trans., Instruments and Experimental Techniques, 1968, No. 3, pp. 696–698].

    Google Scholar 

  67. 67. Semenov, A.N., “Simple Optical Methods for Supersonic Flow Study,” in Aerophysical Studies of Supersonic Flows, Nauka Publ., Leningrad, 1967.

    Google Scholar 

  68. 68. Gerasimov, S.I., and Kholin, S.A., “Optical recording of Precesses Associated with Shock Wave Release to the Plate Free Surface,” Voprosy Atomnoi Nauki i Tekhniki. Seriya: Teoreticheskaya i Prikladnaya Fizika, 2000, No. 2–3, pp. 21–23.

    Google Scholar 

  69. 69. Folkart, K., “Spark Light Sources and High-Frequency Spart Cinematography,” in Physics of Fast Processes, Vol. 1, Zlatin, N.A., ed., Mir Publ., Moscow, 1971.

    Google Scholar 

  70. 70. Gerasimov, S.I., Faikov, Yu.I., and Kholin, S.A., Accumulative Light Sources, RFNC-VNIIEF, Sarov, Russia, 2002.

    Google Scholar 

  71. 71. Toner, G., “Pulsed X-Ray Engineering,” in Physics of Fast Processes, Vol. 1, Zlatin, N.A., ed., Mir Publ., Moscow, 1971, pp. 336–381.

    Google Scholar 

  72. 72. Ziuzin, V.P., Manakova, M.A., and Tsukerman, V.A., “Sealed Sharp- Focusing Pulse X-Ray Tubes,” Pribory i Tekhnika Eksperimenta, 1958, No. 1, pp. 84–87, [English trans., Instruments and Experimental Techniques, 1958, No. 1, pp. 92–95].

    Google Scholar 

  73. 73. Pavlovskii, A.I., Kuleshov, G.D., Sklizkov, G.V., Zysin, Yu.A., and Gerasimov, A.I., “High-Current Ironless Betatrons,” Doklady Akademii Nauk SSSR, Vol. 160, No. 1, 1965, pp. 68–70, [English trans., Soviet Physics - Doklady, Vol. 10, no. 1, 1965, pp. 30–32].

    Google Scholar 

  74. 74. Butslov, M.M., Stepanov, B.M., and Fanchenko, S.D., Electrooptical Converters and Their use in Scientific Research, Nauka Publ., Moscow, 1978.

    Google Scholar 

  75. 75. Kovtun, A.D., and Makarov, Yu.M., Pulsed X-Ray Method, USSR Inventors Certificate N 519667. MKI G 03 B 42/02, Bulletin of Inventions, 1976, N 24.

    Google Scholar 

  76. 76. Tsukerman, V.A., and Manakova, M.A., “Sources of Short X-Ray Pulses for Investigating Fast Processes,” Zhurnal Tekhnicheskoi Fiziki, Vol. 27, No. 2, 1957, pp. 391–403, [English trans., Soviet Physics - Technical Physics, Vol. 2, No. 2, 1957, pp. 353–363].

    Google Scholar 

  77. 77. Kovtun, A.D., Belyaev, G.K., Makarov, Yu.M., Motornov, A.P., Nikonov, N.A., and Pavlunin, A.N., “Multi-Frame Recording of High-Speed Precesses Using Single X-Ray Source,” proc., 22 nd Int. Congress on High-Speed Photography and Photonics, Santa Fe, NM, 1996, pp. 900–902.

    Google Scholar 

  78. 78. Burtsev, V.V., Yelfimov, S.E., Makarov, Yu.M., Ryzhkov, A.V., “Four-Channel Module Electrooptical X-Ray Image Recorder ChINARA,” proc., 16 th Scientific Technical Conf. High-Speed Photographing, Photonics, and Metrology of Fast Processes, Moscow, 1993, p. 32.

    Google Scholar 

  79. 79. Tolstikova, L.A., and Kovtun, A.D., “Material Density Estimation by X-Ray Image Using the Apparatus of X-Raying Numerical Simulation,” in Advanced Methods for Designing and Refinement of Ordnance Devices, RFNC-VNIIEF, Sarov, Russia, 2000, pp. 281–286.

    Google Scholar 

  80. 80. Batkov, Yu.V., Kovtun, A.D., Novikov, S.A., Skokov, V.I., and Tolstikova, L.A., “Mechanism of Formation of a Fast Gas Jet,” Fizika Goreniya i Vzryva, Vol. 37, No. 5, 2001, pp. 98–103, [English trans., Combustion, Explosion, and Shock Waves,Vol. 37, No. 5, 2001, pp. 580–584].

    Google Scholar 

  81. 81. Komrachkov, V.A., and Panov, K.N., “Research into the Effect of Loading Pressure on Material Density Distribution Following Initiating Shock Wave Front in Octogen Base HE,” proc., 3 rd Int. Conf. Khariton Scientific Lectures, RFNCVNIIEF, Sarov, Russia, 2001, pp. 70–75.

    Google Scholar 

  82. 82. Lebedev, A.I., Igonin, V.V., Nizovtsev, P.N., et al., “Study of Soild Free Surface Instability Under Shock Effect,” Trudy, Vol. 1, RFNC-VNIIEF, Sarov, Russia, 2001, pp. 590–597.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Batkov, Y., Borisenok, V., Gerasimov, S., Komrachkov, V., Kovtun, A., Zhernokletov, M. (2006). Recording Fast Processes in Dynamic Studies. In: Zhernokletov, M.V., Glushak, B.L. (eds) Material Properties under Intensive Dynamic Loading. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36845-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36845-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36844-1

  • Online ISBN: 978-3-540-36845-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics