Advertisement

Recording Fast Processes in Dynamic Studies

  • Yu.V. Batkov
  • V.A. Borisenok
  • S.I. Gerasimov
  • V.A. Komrachkov
  • A.D. Kovtun
  • M.V. Zhernokletov
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

Diagnostic methods for obtaining quantification of the field variables that are important in understanding the physics of fast time-dependent processes, such as the thermomechanical processes associated with shock waves, have their own particular features. These features grow out of the demands of the challenging environment within which the measurements must be taken. The data must be taken within a very short time period; the diagnostic device should be remote since destruction is inevitable in an explosion or impact; and the measurements should be as complete as possible since it is impossible to return a system (assembly, sample) to its original state in order to check the results.

Keywords

Shock Wave Dynamic Study Base Plate Lithium Niobate Shock Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Altshuler, L.V., “Use of ShockWaves in High-Pressure Physics,” Uspekhi Fizicheskikh Nauk, Vol. 85, No. 2, 1965, pp. 197–258, [English trans., Soviet Physics Uspekhi, Vol. 8, No. 1, 1965, pp. 52–91].Google Scholar
  2. 2.
    2. Graham, R.A., and Asay, J.R., “Measurements ofWave Profiles in Shock-Loaded Solids,” High Temperatures - High Pressures, Vol. 10, No. 4, 1978, pp. 355–390Google Scholar
  3. 3.
    3. Keeler, R.N., and Royce, E.B., “Shock Waves in Condensed Media,” in Proc., International School of Physics “Enrico Fermi”, Course XLVIII, Physics of High Energy Density, Caldirola, P., and Knoepfel, H., eds., Academic Press, New York, 1971, pp. 51–150, [Russian trans., Mir Publ., Moscow, 1974, pp. 60–170].Google Scholar
  4. 4.
    4. Mineev, V.N., and Ivanov, A.G., “Electromotive Force Produced by Shock Compression of a Substance,” Uspeki Fizicheskikh Nauk, Vol. 119, No. 1, 1976, pp. 75–109, [English trans., Soviet Physics Uspekhi, Vol. 19, No. 5, 1976, pp. 400–419].Google Scholar
  5. 5.
    5. Glushak, B.L., Zharkov, A.P., Zhernokletov, M.V., Ternovoi, V.Ya., Filimonov, A.S., and Fortov, V.E., “Experimental Investigation of the Thermodynamics of Dense Plasmas Formed from Metals at High Energy Concentrations,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 96, No. 4, 1989, pp. 1301–1318, [English trans., Soviet Physics JETP, Vol. 69, No. 4, 1989, pp. 739–749].Google Scholar
  6. 6.
    6. Ashaev, V.K., Doronin, G.S., and Levin, A.D., “Detonation Front Structure in Condensed High Explosives,” Fizika Goreniya i Vzryva, Vol. 24, No. 1, 1988, pp. 95–99, [English trans., Combustion, Explosion, and Shock Waves, Vol. 24, No. 1, 1988, pp. 88–92].Google Scholar
  7. 7.
    7. Gatilov, L.A., Ibragimov, R.A., and Kudashov, A.V., “Structure of a Detonation Wave in Cast TNT,” Fizika Goreniya i Vzryva, Vol. 25, No. 2, 1989, pp. 82–84, [English trans., Combustion, Explosion and Shock Waves, Vol. 25, No. 2, 1989, pp. 206–208].Google Scholar
  8. 8.
    8. Trunin, R.F., (ed.), Properties of Condensed Materials at High Pressures, RFNC-VNIIEF, Sarov, Russia, 1992.Google Scholar
  9. 9.
    9. Bancroft, D., Peterson, E.L., and Minshall, S., “Polymorphism of Iron at High Pressure,” Journal of Applied Physics, Vol. 27, No. 3, 1956, pp. 291–298.CrossRefGoogle Scholar
  10. 10.
    10. Kurakin, N.I., Danilenko, V.V., Kozurek, N.P., et al., “Electrocontact Method for Recording x - t Diagrams,” Khimicheskaya Fizika, 1993, No. 5.Google Scholar
  11. 11.
    11. Poplavko, Yu.M., Physics of Dielectrics, Vyshcha Shkola Publ., Kiev, 1980.Google Scholar
  12. 12.
    12. Borisenok, V.A., Morozov, V.A., Novitsky, E.Z., et al., “Dynamic Compressibility of Single Crystal ADTGS and its Electrical Response to Shock Action,” Kristallografiya, Vol. 37, No. 4, 1992, pp. 971–978.Google Scholar
  13. 13.
    13. Lee, L.M., Williams, W.D., Graham, R.A., and Bauer, F., “Studies of the Bauer Piezoelectric Polymer Gauge (PVF2) Under Impact Loading,” Shock Waves in Condensed Matter - 1985, Gupta, Y.M., ed., Plenum Press, NY, 1986, pp. 497–502.Google Scholar
  14. 14.
    14. Borisenok, V.A., Morosov, V.A., and Novitsky, E.Z., “PVDF as a Working Medium of Shock Wave Gauges,” proc., 10 th Int. Conf. High Energy Rate Fabrication, Lubljana, Yugoslavia, 1989, pp. 428–430.Google Scholar
  15. 15.
    15. Dubovik, A.S., Photographic Recording of Fast Processes, Nauka Publ., Moscow, 1964, p. 341.Google Scholar
  16. 16.
    16. Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Shock-Wave Phenomena in Condensed Matter, Yanus-K Publ., Moscow, 1996, [see also, Kanel, G.I., Razorenov, S.V., and Fortov, V.E., Shock-Wave Phenomena and the Properties of Condensed Matter, Springer-Verlag, New York, 2004].Google Scholar
  17. 17.
    17. Salamandra, G.D., Photographic Methods for the Study of Fast Processes, Nauka Publ., Moscow, 1974.Google Scholar
  18. 18.
    18. Danilenko, V.V., Kozeruk, N.P., and Telichko, I.V., “Fiber-Optic Sensors for Gas Dynamics Studies,” in Fast HE Initiation. Peculiar Detonation Conditions, Tarzhanov, V.I., ed., RFNC-VNIITF, Snezhinsk, Russia, 1998, pp. 145–153.Google Scholar
  19. 19.
    19. Kozeruk, N.P., “Optical Signal Generation in Fiber-Optic Measurement Systems in Shock Phenomena Diagnostics,” in Fast HE Initiation. Peculiar Detonation Conditions, Tarzhanov, V.I., ed., RFNC-VNIITF, Snezhinsk, Russia, 1998, pp. 154–166.Google Scholar
  20. 20.
    20. Danilenko, V.V., and Kozeruk, N.P., “On Errors in Time Interval Measurements with Streak Camera SFR-2M,” Zhurnal Nauchnoyi i Prikladnoy Fotografii i Kinematografii, Vol. 34, No. 5, 1989, pp. 335–340.Google Scholar
  21. 21.
    21. Bolotov, A.A., and Chernyshev, V.K., “A Method for Producing Calibrated High Frequency Light Pulses for Time Scaling on Working Frame of Ultrahigh- Speed Photorecorders,” in Filming Technology, Its Use in the Industry and Research. Collected Papers, No. 2, Moscow, 1966.Google Scholar
  22. 22.
    22. Bolotov, A.A., Lovyagin, B.M., Manulov, N.A., and Sakkeus, I.K., “50-Channel Light-Pulse Generator,” Pribory i Tekhnika Eksperimenta, 1975, No. 3, pp. 198–200, [English trans., Instruments and Experimental Techniques, Vol. 18, No. 3, Part 2, 1975, pp. 909–911].Google Scholar
  23. 23.
    23. Bolotov, A.A., Lovyagin, B.M., and Ilyin, N.V., “Timer DV-2 to SFR type Photorecorder,” Zhurnal Nauchnoy i Prikladnoy Fotografii i Kinematografii, 1977, No. 6, pp. 415–419.Google Scholar
  24. 24.
    24. Kholm, R., Electrical Contacts, Izdatelstvo Inostrannoy Literatury Publ., Moscow, 1961.Google Scholar
  25. 25.
    25. Ivanov, A.G., and Novikov, S.A., “Capacitive Data Transmitter Method for Recording the Instantaneous Velocity of Moving Surfaces,” Pribory i Tekhnika Eksperimenta, 1963, No. 1, pp. 135–138, [English trans., Instruments and Experimental Techniques, 1963, No. 1, pp. 128–131].Google Scholar
  26. 26.
    26. Ivanov, A.G., Novikov, S.A., and Sinitsyn, V.A., “Investigation of Elastic-Plastic Waves in Explosively Loaded Iron and Steel,” Tverdogo Tela, Vol. 5, No. 1, 1963, pp. 269–278, [English trans., Soviet Physics - Solid State, Vol. 5, No. 1, 1963, pp. 196–202].Google Scholar
  27. 27.
    27. Zaitsev, V.M., Pokhil, P.F., and Shvedov, K.K., “Electomegnetic Method for Measurement of Explosion Product Velocity,” Doklady Akademii Nauk SSSR, Vol. 132, No. 6, 1960, pp. 1339–1340.Google Scholar
  28. 28.
    28. Dremin, A.N., Savrov, S.D., Trofimov, V.S., and Shvedov, K.K., Detonation Waves in Condensed Matter, Nauka Publ., Moscow, 1970, p. 169.Google Scholar
  29. 29.
    29. Zubarev, V.N., “The Motion of Explosion Products Behind the Front of a DetonationWave,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1965, No. 2, pp. 54–61, [English trans., Journal of Applied Mechanics and Technical Physics, 1965, No. 2, pp. 45–50].Google Scholar
  30. 30.
    30. Urtiew, P.A., Erickson, L.M., Hayes, B., and Parker, N.L., “Pressure and Particle Velocity Measurements in Solids Subjected to Dynamic Loading,” Fizika Goreniya i Vzryva, Vol. 22, No. 5, 1986, pp. 113–126, [English trans., Combustion, Explosion, and Shock Waves, Vol. 22, No. 5, 1986, pp. 597–614].Google Scholar
  31. 31.
    31. Ko, J.F., “Improper Utilization of Electomagnetic Velocimeters in High Explosives,” Khimicheskaya Fizika, 1995, No. 12, pp. 68–77.Google Scholar
  32. 32.
    32. Kheis, B., “A System for Nanosecond-Resolution Measurements of Material Particles in Shock and Detonation Waves,” Pribory dlya Nauchnykh Issledovaniya, 1981, No. 4, pp. 92–102.Google Scholar
  33. 33.
    33. Altshuler, L.V., Pavlovskii, M.N., and Drakin, V.P., “Peculiarities of Phase Transitions in Compression and Rarefaction Shock Waves,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 52, No. 2, 1967, pp. 400–408, [English trans., Soviet Physics JETP, Vol. 25, No. 2, 1967, pp. 260–265].Google Scholar
  34. 34.
    34. Fritz, J.N., and Morgan, J.A., “An Electromagnetic Technique for Measureing Material Velocity,” Review of Scientific Instruments, Vol. 44, No. 2, 1973, pp. 215–221.CrossRefGoogle Scholar
  35. 35.
    35. Novikov, S.A., Kashintsov, V.I., Fedotkin, A.S., Sinitsyn, V.A., Bodrenko, S.I., and Koltunov, O.I., “Measurement of the Velocities of Current-Conducting Shells with a Sensor of the Electromagnetic Type,” Fizika Goreniya i Vzryva, Vol. 22, No. 1, 1986, pp. 71–74, [English trans., Combustion, Explosion, and Shock Waves, Vol. 22, No. 1, 1986, pp. 67–70].Google Scholar
  36. 36.
    36. Zhugin, Yu.N., and Krupnikov, K.K., “Induction Method of Continuous Recording of the Velocity of a Condensed Medium in Shock-Wave Processes,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1983, No. 1, pp. 102–108, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 24, No. 1, 1983, pp. 88–93].Google Scholar
  37. 37.
    37. Graham, R.A., Solids Under High-Pressure Shock Compression, Springer-Verlag, New York, 1993.Google Scholar
  38. 38.
    38. Astanin, V.V., Mineev, V.N., Obukhov, A.S., and Romanchenko, V.I., Electric Measurements of Shock Wave Parameters with Manometric Sensors: Preprint. Institute of Strength Problems, Kiev, 1985.Google Scholar
  39. 39.
    39. Novitskii, E.Z., Korotchenko, M.V., Volnyanskii, M.D., and Borisenok, V.A., “Investigation of the Dynamic Piezoelectric Moduli of Single Crystals of Bi12GeO20, Li2 GeO3, and LiNbO3,” Fizika Goreniya i Vzryva, Vol. 16, No. 1, 1980, pp. 99–105, [English trans., Combustion, Explosion, and Shock Waves, Vol. 16, No. 1, 1980, pp. 93–98].Google Scholar
  40. 40.
    40. Graham, R.A., Neilson, F.W., and Benedick, W.B., “Piezoelectric Current from Shock-Loaded Quartz - A Submicrosecond Stress Gauge,” Journal of Applied Mechanics, Vol. 36, No. 5, 1965, pp. 1775–1783.Google Scholar
  41. 41.
    41. Davison, L., and Graham, R.A., Physics Reports, Vol. 55, No. 4, 1979, pp. 255–379.CrossRefGoogle Scholar
  42. 42.
    42. Bauer, F., “Ferroelectric Properties and Shock Response of a Poled PVF2 Polymer and of VF2/C2F3H Copolymers,” Shock Waves in Condensed Matter - 1985, Gupta, Y.M., ed., Plenum Press, NY, 1986, pp. 483–496.Google Scholar
  43. 43.
    43. Bauer, F., “PVF2 Polymers: Ferroelectric Polarization and Piezoelectric Properties Under Dynamic Pressure and Shock Wave Action,” Ferroelectrics, Vol. 49, Nos. 1-4, 1983, pp. 231–240.Google Scholar
  44. 44.
    44. Lee, L.M., Williams, W. D., Graham, R.A., and Bauer, F., “Studies of the Bauer Piezoelectric Polymer Gauge (PVF2) Under Impact Loading,” Shock Waves in Condensed Matter - 1985, Gupta, Y.M., ed., Plenum Press, NY, 1986, pp. 497–502.Google Scholar
  45. 45.
    45. Graham, R.A., Bauer, F., and Anderson, M.V., “Properties of the Piezoelectric Polymer PVDF film under High Pressure Shock Compression,” in Book of Abstracts, ISAF-90, 1990, p. 883.Google Scholar
  46. 46.
    46. Graham, R.A., Anderson, M.U., Bauer, F., and Setchell, R.E., “Piezoelectric Polarization of the Ferroelectric Polymer PVDF from 10 MPa to 10 GPa: Studies of Loading-Path Dependence,” Shock Compression of Condensed Matter - 1991, Schmidt, S.C., Dick, R.D., Forbes, J.W., and Tasker, D.G., eds., Elsevier, Amsterdam, 1992, pp. 883–886.Google Scholar
  47. 47.
    47. Bauer, F., Graham, R.A., Anderson, M.U., Lefebvre, H., Lee, L.M., and Reed, R.P., “Response of the Piezoelectric Polymer PVDF to Shock Compression Greater than 10 GPa,” Shock Compression of Condensed Matter - 1991, Schmidt, S.C., Dick, R.D., Forbes, J.W., and Tasker, D.G., eds., Elsevier, Amsterdam, 1992, pp. 887–890.Google Scholar
  48. 48.
    48. Reed, R.P., Graham, R.A., Moore, L.M., Lee, L.M., Fogelson, D.J., and Bauer, F., “The Sandia Standard for PVDF Shock Sensors,” Shock Compression of Condensed Matter - 1989, Schmidt, S.C., Johnson, J.N., and Davison, L.W., eds., Elsevier, Amsterdam, 1990, pp. 825–828.Google Scholar
  49. 49.
    49. Bauer, F., “Properties of Ferroelectric Polymers Under High Pressure and Shock Loading,” Nuclear Instruments and Methods in Physics Research B, Vol. 105, Nos. 1–4, 1995, pp. 212–216.CrossRefGoogle Scholar
  50. 50.
    50. Bauer, F., “PVDF Gauge Piezoelectric Response Under Two-Stage light Gas Gun Impact Loading,” Shock Compression of Condensed Matter - 2001, Furnish, M.D., Thadhani, N.N., and Horie, Y., eds., AIP Press, Melville, NY, 2002, pp. 1149–1152.Google Scholar
  51. 51.
    51. Hodges, R.V., McCoy, L.E., and Toolson, J.R., “Polyvinylidene Floride (PVDF) Gauges for Measurement of Output Pressure of Small Ordnance Devices,” Propellants, Explosives, Pyrotechnics, Vol. 25, No. 1, 2000, pp. 13–18.CrossRefGoogle Scholar
  52. 52.
    52. Chartagnac, P., Decaso, P., Jimenez, B., Bouchu, M., Cavailler, C., Delaval, J., “Dynamic Behaviour of PVF2 Gauges in the 0-600 kbar Range,” Shock Compression of Condensed Matter - 1991, Schmidt, S.C., Dick, R.D., Forbes, J.W., and Tasker, D.G., eds., Elsevier, Amsterdam, 1992, pp. 893–896.Google Scholar
  53. 53.
    53. Fuller, P.J.A., and Price, J.H., “Electrical Conductivity of Manganin and Iron at High Pressures,” Nature, Vol. 193, No. 4812, 1962, pp. 262–263.CrossRefGoogle Scholar
  54. 54.
    54. Khristoforov, B.D., Goller, E.E., Sidorin, A.Ya., and Livshits, L.D., “Manganin Probe for Measuring Shock Pressures in Solids,” Fizika Goreniya i Vzryva, 1971, No. 4, pp. 613–615, [English trans., Combustion, Explosion, and Shock Waves, Vol. 7, No. 4, 1971, pp. 525–527.Google Scholar
  55. 55.
    55. Kanel, G.I., “Using Manganin Sensors for Measurement of Condensed Matter Shock Compression Pressure, VINITI, N 477–74 Dep. 1974.Google Scholar
  56. 56.
    56. Dremin, A.N., and Kanel, G.I., “Compression and Rarefaction Waves in Shock- Compressed Metals,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1976, No. 2, pp. 146–153, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 17, No. 2, 1976, pp. 263–267.Google Scholar
  57. 57.
    57. Batkov, Yu.V., Novikov, S.A., Sinitsyna, L.M., and Chernov, A.V., “Study of Shear Stresses in Metals at a Shock Front,” Problemy Prochnosti, 1981, No. 5, pp. 56–59 [English trans., Strength of Materials, Vol. 13, No. 5, 1981, pp. 601–605].Google Scholar
  58. 58.
    58. Lyle, J.W., Schriever, R.L., and McMillan, A.R., “Dynamic Piezoresistive Coefficient of Manganin to 392 kbar,” Journal of Apllied Mechanics, Vol. 40, No. 11, pp. 4663–4664.Google Scholar
  59. 59.
    59. Kanel, G.I., Vakhitova, G.G., and Dremin, A.N., “Metrological Characteristics of Manganin Pressure Pickups Under Conditions of Shock Compression and Unloading,” Fizika Goreniya i Vzryva, Vol. 14, No. 2, 1978, pp. 130–135, [English trans., Combustion, Explosion, and Shock Waves, Vol. 14, No. 2, 1978, pp. 244–248].Google Scholar
  60. 60.
    60. Grady, D.E., and Ginsberg, M.J., “Piezoresistive Effects in Ytterbium Stress Transducers,” Journal of Applied Physics, Vol. 48, No. 6, 1977, pp. 2179–2181.CrossRefGoogle Scholar
  61. 61.
    61. Fot, N.A., Alekseevskii, V.P., and Yarosh, V.V., “Dielectric Pulsed-Pressure Pickup,” Pribory i Tekhnika Eksperimenta, 1973, No. 2, pp. 199–201, [English trans., Instruments and Experimental Techniques, Vol. 16, No. 2, Part 2, 1973, pp. 567–569.Google Scholar
  62. 62.
    62. Stepanov, G.V., Elastic-Plastic Material Deformation Under Action of Pulsed Loads, Naukova Dumka Publ., Kiev, 1979.Google Scholar
  63. 63.
    63. Batkov, Yu.V., Novikov, S.A., Permyakov, V.V., and Chernov, A.V., “Peculiarities in Measurement of Pressure Pulses with a Dielectric Sensor,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1981, No. 2, pp. 103–105, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 22, No. 2, 1981, pp. 227–228].Google Scholar
  64. 64.
    64. Tyunyaev, Yu.N., Mineev, V.N., and Lisitsyn, Yu.V., “Threshold Type Polarization Sensor for Pulsed Pressure Measurement,” proc., 1 st All-Union Symposium on Pulsed Pressures, VNIIFTRI, Moscow, 1974, pp. 53–56.Google Scholar
  65. 65.
    65. Ivanov, A.G., Lisitsyn, Yu.V., and Novitskii, E.Z., “Polarization of Dielectrics Under Shock Load,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 54, No. 1, 1968, pp. 285–291, [English trans., Soviet Physics JETP, Vol. 27, No. 1, 1968, pp. 153–155].Google Scholar
  66. 66.
    66. Lebedev, N.N., Model, I.Sh., and Kuznetsov, F.O., “Recording of the Velocity of High-Intensity Shock Waves with Piezoelectric Transducers,” Pribory i Tekhnika Eksperimenta, 1968, No. 3, pp. 183–185, [English trans., Instruments and Experimental Techniques, 1968, No. 3, pp. 696–698].Google Scholar
  67. 67.
    67. Semenov, A.N., “Simple Optical Methods for Supersonic Flow Study,” in Aerophysical Studies of Supersonic Flows, Nauka Publ., Leningrad, 1967.Google Scholar
  68. 68.
    68. Gerasimov, S.I., and Kholin, S.A., “Optical recording of Precesses Associated with Shock Wave Release to the Plate Free Surface,” Voprosy Atomnoi Nauki i Tekhniki. Seriya: Teoreticheskaya i Prikladnaya Fizika, 2000, No. 2–3, pp. 21–23.Google Scholar
  69. 69.
    69. Folkart, K., “Spark Light Sources and High-Frequency Spart Cinematography,” in Physics of Fast Processes, Vol. 1, Zlatin, N.A., ed., Mir Publ., Moscow, 1971.Google Scholar
  70. 70.
    70. Gerasimov, S.I., Faikov, Yu.I., and Kholin, S.A., Accumulative Light Sources, RFNC-VNIIEF, Sarov, Russia, 2002.Google Scholar
  71. 71.
    71. Toner, G., “Pulsed X-Ray Engineering,” in Physics of Fast Processes, Vol. 1, Zlatin, N.A., ed., Mir Publ., Moscow, 1971, pp. 336–381.Google Scholar
  72. 72.
    72. Ziuzin, V.P., Manakova, M.A., and Tsukerman, V.A., “Sealed Sharp- Focusing Pulse X-Ray Tubes,” Pribory i Tekhnika Eksperimenta, 1958, No. 1, pp. 84–87, [English trans., Instruments and Experimental Techniques, 1958, No. 1, pp. 92–95].Google Scholar
  73. 73.
    73. Pavlovskii, A.I., Kuleshov, G.D., Sklizkov, G.V., Zysin, Yu.A., and Gerasimov, A.I., “High-Current Ironless Betatrons,” Doklady Akademii Nauk SSSR, Vol. 160, No. 1, 1965, pp. 68–70, [English trans., Soviet Physics - Doklady, Vol. 10, no. 1, 1965, pp. 30–32].Google Scholar
  74. 74.
    74. Butslov, M.M., Stepanov, B.M., and Fanchenko, S.D., Electrooptical Converters and Their use in Scientific Research, Nauka Publ., Moscow, 1978.Google Scholar
  75. 75.
    75. Kovtun, A.D., and Makarov, Yu.M., Pulsed X-Ray Method, USSR Inventors Certificate N 519667. MKI G 03 B 42/02, Bulletin of Inventions, 1976, N 24.Google Scholar
  76. 76.
    76. Tsukerman, V.A., and Manakova, M.A., “Sources of Short X-Ray Pulses for Investigating Fast Processes,” Zhurnal Tekhnicheskoi Fiziki, Vol. 27, No. 2, 1957, pp. 391–403, [English trans., Soviet Physics - Technical Physics, Vol. 2, No. 2, 1957, pp. 353–363].Google Scholar
  77. 77.
    77. Kovtun, A.D., Belyaev, G.K., Makarov, Yu.M., Motornov, A.P., Nikonov, N.A., and Pavlunin, A.N., “Multi-Frame Recording of High-Speed Precesses Using Single X-Ray Source,” proc., 22 nd Int. Congress on High-Speed Photography and Photonics, Santa Fe, NM, 1996, pp. 900–902.Google Scholar
  78. 78.
    78. Burtsev, V.V., Yelfimov, S.E., Makarov, Yu.M., Ryzhkov, A.V., “Four-Channel Module Electrooptical X-Ray Image Recorder ChINARA,” proc., 16 th Scientific Technical Conf. High-Speed Photographing, Photonics, and Metrology of Fast Processes, Moscow, 1993, p. 32.Google Scholar
  79. 79.
    79. Tolstikova, L.A., and Kovtun, A.D., “Material Density Estimation by X-Ray Image Using the Apparatus of X-Raying Numerical Simulation,” in Advanced Methods for Designing and Refinement of Ordnance Devices, RFNC-VNIIEF, Sarov, Russia, 2000, pp. 281–286.Google Scholar
  80. 80.
    80. Batkov, Yu.V., Kovtun, A.D., Novikov, S.A., Skokov, V.I., and Tolstikova, L.A., “Mechanism of Formation of a Fast Gas Jet,” Fizika Goreniya i Vzryva, Vol. 37, No. 5, 2001, pp. 98–103, [English trans., Combustion, Explosion, and Shock Waves,Vol. 37, No. 5, 2001, pp. 580–584].Google Scholar
  81. 81.
    81. Komrachkov, V.A., and Panov, K.N., “Research into the Effect of Loading Pressure on Material Density Distribution Following Initiating Shock Wave Front in Octogen Base HE,” proc., 3 rd Int. Conf. Khariton Scientific Lectures, RFNCVNIIEF, Sarov, Russia, 2001, pp. 70–75.Google Scholar
  82. 82.
    82. Lebedev, A.I., Igonin, V.V., Nizovtsev, P.N., et al., “Study of Soild Free Surface Instability Under Shock Effect,” Trudy, Vol. 1, RFNC-VNIIEF, Sarov, Russia, 2001, pp. 590–597.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Yu.V. Batkov
  • V.A. Borisenok
  • S.I. Gerasimov
  • V.A. Komrachkov
  • A.D. Kovtun
  • M.V. Zhernokletov

There are no affiliations available

Personalised recommendations