Advertisement

Methods and Devices for Producing Intense Shock Loads

  • M.V. Zhernokletov
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

It is convenient to classify experimental devices according the energy source used to drive shock loads. In this approach, they can be subdivided into a number of principal groups:

Keywords

Shock Wave Detonation Wave Rarefaction Wave Shock Compression Mach Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Stanyukovich, K.P., Unsteady Motion of Continuum, Nauka Publ., Moscow, 1971Google Scholar
  2. 2.
    2. Zlatin, N.A., and Mishin, G.I., Ballistic Devices and their use in Experimental Studies, Nauka Publ., Moscow, 1974.Google Scholar
  3. 3.
    3. Nabatov, S.S., and Yakushev, V.V., “A facility for Shock-Wave Experiments,” Problemy Prochnosti, 1975, No. 3, pp. 101–102, [English trans., Strength of Materials, Vol. 7, No. 3, 1975, pp. 367–368].Google Scholar
  4. 4.
    4. Lekornte, C.L., “High-Velocity Launching,” in High-Speed Physics, Zlatin, N.A., ed., Mir Publ., Moscow, 1971, Vol. 2, pp. 247–275 (in Russian) [see also High-Speed Physics, Vollrath, K., and Thomer, G., eds., Springer-Verlag, Wien, 1967 (in German)].Google Scholar
  5. 5.
    5. Mitchell, A.C., and Nellis, W.J., “Diagnostic System of the Lawrence Livermore National Laboratory Two-Stage Light-Gas Gun,” Review of Scientific Instruments, Vol. 52, No. 3, 1981, pp. 347–359.CrossRefGoogle Scholar
  6. 6.
    6. Chhabildas, L.C., Kmetyk, L.N., Reinhart, W.D., and Hall, C.A., “Launch Capabilities to 16 km/s,” Shock Compression of Condensed Matter – 1995, Schmidt, S.C., and Tao, W.C., eds., AIP Press, Woodbury, NY, 1996, pp. 1197– 1200.Google Scholar
  7. 7.
    7. Fowles, G.R., Duval, G.E., Asay, J.R., Bellamy, P., Feistmann, F, Grady D., Michaels, T, and Mitchell, R. “Gas Gun for Impact Studies,” Review of Scientific Instruments, Vol. 41, No. 7, 1970, pp. 984–996 [Russian trans., Pribory dlya Nauchnykh Issledovaniya, 1970, No. 7, pp. 78–90].CrossRefGoogle Scholar
  8. 8.
    8. Thunborg, S., Jr., Ingram, G.E., and Graham, R.A., “Compressed Gas Gun for Controlled Planar Impacts Over a Wide Velocity Range,” Review of Scientific Instruments, Vol. 35, No. 1, 1964, pp. 11–14, [Russian trans., Pribory dlya Nauchnykh Issledovaniya, 1964, No. 1, pp. 13–17].CrossRefGoogle Scholar
  9. 9.
    9. Mineev, V.N., Pogorelov, V.P., Ivanov, A.G., Svidinskii, V.A., Rusak, V.N., Bukreev, Yu.V., Tkachenko, I.A., Shitov, A.T., and Krivov, S.A., “Unit for Investigation of the Behavior of Materials and Constructions with Dynamic Loads,” Fizika Goreniya i Vzryva, Vol. 14, No. 3, 1978, pp. 129–133, [English trans., Combustion, Explosion, and Shock Waves, Vol. 14, No. 3, 1978, pp. 377– 380].Google Scholar
  10. 10.
    10. Altshuler, L.V., “Use of ShockWaves in High-Pressure Physics,” Uspekhi Fizicheskikh Nauk, Vol. 85, No. 2, 1965, pp. 197–258, [English trans. Soviet Physics Uspekhi, Vol. 8, No. 1, 1965, pp. 52–91].Google Scholar
  11. 11.
    11. Trunin, R.F., (ed.), Properties of Condensed Materials at High Pressures and Temperatures, RFNC-VNIIEF, Sarov, Russia, 1992.Google Scholar
  12. 12.
    12. Zababakhin, E.I., Some Problems of the Gasdynamics of Explosions, RFNCVNIITF, Snezhinsk, Russia, 1997, [English trans. RFNC-VNIITF, Snezhinsk, Russia, 2001].Google Scholar
  13. 13.
    13. Altshuler, L.V., Trunin, R.G., Krupnikov, K.K., and Panov, N.V., “Explosive Laboratory Devices for ShockWave Compression Studies,” Uspekhi Fizicheskikh Nauk, Vol. 166, No. 5, 1996, pp. 575–581, [English trans., Physics – Uspekhi, Vol. 39, No. 5, 1996, pp. 539–544].CrossRefGoogle Scholar
  14. 14.
    14. Glushak, B.L., Zharkov, A.P., Zhernokletov, M.V., Ternovoi, V.Ya., Filimov, A.S., and Fortov, V.E., “Experimental Investigation of the Thermodynamics of Dense Plasmas Formed from Metals at High Energy Concentrations,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 96, No. 4, 1989, pp. 1301–1318, [English trans., Soviet Physics – JETP, Vol. 69, No. 4, 1989, pp. 739–749].Google Scholar
  15. 15.
    15. Raevsky, V.A., “Effect of Rayleigh-Taylor Instability on Solid Plane Layer Acceleration,” Voprosy Atomnoi Naukii i Tekhniki. Seriya: Teoreticheskaya i Prikladnaya Fizika, 1994, No. 1, pp. 55–58.Google Scholar
  16. 16.
    16. Batkov, Yu.V., Kovalev, N.P., Kovtun, A.D., Kuropatkin, V.G., Lebedev, A.I., Makarov, Yu.M., Manachkin, S.F., Novikov, S.A., Raevskii, V.A., and Styazhkin, Yu.M., “Acceleration of Metal Plates up to Velocities Higher than 10 km/s,” Doklady Akademii Nauk, Vol. 357, No. 6, 1997, pp. 765–767, [English trans., Physics – Doklady, Vol. 42, No. 12, 1997, pp. 680–682].Google Scholar
  17. 17.
    17. Pogorelov, A.P., Glushak, B.L., Novikov, S.A., Sinitsyn, V.A., and Chernov, A.V., “Dependence of Recoil Impulse from a Rigid Barrier Under Sliding Conditions of Detonation of an Explosive Layer,” Fizika Goreniya i Vzryva, Vol. 13, No. 5, 1977, pp. 771–776, [English trans., Combustion, Explosion, and Shock Waves, Vol. 13, No. 5, 1977, pp. 654–656].Google Scholar
  18. 18.
    18. Hoskin, N.E., Allan, J.W.S, Bailey, W.A., Lethaby, J.W., and Skidmore, I.C., “The Motion of Plates and Cylinders Driven by DetonationWaves at Tangential Incidence,” proc, 4 th International Symposium on Detonation, White Oak, MD, 1965, pp. 14–26.Google Scholar
  19. 19.
    19. Glushak, B.L., Novikov, S.A., Pogorelov, A.P., and Sinitsyn, V.A., “Investigation of TNT and TH 50/50 Initiation by Short-Duration Shocks,” Fizika Goreniya i Vzryva, Vol. 17, No. 6, 1981, pp. 90–95, [English trans., Combustion, Explosion, and Shock Waves, Vol. 17, No. 6, 1981, pp. 660–665].Google Scholar
  20. 20.
    20. Deribas, A.A., Strengthening and Welding Physics, Nauka Publ., Siberian Branch, Novosibirsk, 1980.Google Scholar
  21. 21.
    21. Titov, V.M., Fadeenko, Yu.I., and Titova, N.S., “Acceleration of Solid Particles by Cumulative Explosion,” Doklady Akademii Nauk SSSR, Vol. 180, No. 5, 1968, pp. 1051–1052, [English trans., Soviet Physics – Doklady, Vol. 13, No. 6, 1968, pp. 549–550].Google Scholar
  22. 22.
    22. Meier, J.K., and Kerrisk, J.F., “An Introduction to the Fast Shock Tupe (FST),” Shock Compression of Condensed Matter – 1991, Schmidt, S.C., Dick, R.D., Forbes, J.W., and Tasker, D.G., eds., Elsivier, Amsterdam, 1992, pp. 1045–1048.Google Scholar
  23. 23.
    23. Dolgoborodov, A.Yu., “Explosive Tubular Gun for High-Velocity Launching,” Khimicheskaya Fizika, Vol. 14, No. 1, 1995, pp. 27–32.Google Scholar
  24. 24.
    24. Keller, D.V., and Penning, J.R., Jr., Exploding Foils – The Production of Plane Shock Waves and the Acceleration of Thin Plates,” in Exploding Wires, Vol. 2, Chace, W.G., and Moore, H.K., eds., Plenum Press, NY, 1962, pp. 263-277, [Russian trans., in Conductor Electric Explosion, Vol. 2, Mir Publ., Moscow, 1965, pp. 299–316].Google Scholar
  25. 25.
    25. Pavlovskii, A.I., Kashintsov, V.I., Glushak, B.L., and Novikov, S.A., “Generation of a Mechanical Impulse by Electrical Explosion of a Conductor,” Fizika Goreniya i Vzryva, Vol. 19, No. 3, 1983, pp. 124–126, [English trans., Combustion, Explosion and Shock Waves, Vol. 19, No. 3, 1983, pp. 361–369].Google Scholar
  26. 26.
    26. Barenboim, A.I., Egorov, L.A., Kalinin, V.G., Makeev, N.G., Mokhova, V.V., and Rumyantsev, V.G., “Laboratory Complex for X-Ray Difraction Studies of Shock-Compressed Materials with Exposure Time of 50 nsec,” Pribory i Tekhnika Eksperimenta, 1992, No. 1, pp. 189–192, [English trans., Instruments and Experimental Techniques, Vol. 35, No. 1, Part 2, 1992, pp. 145–148].Google Scholar
  27. 27.
    27. Chau, H.H., Dittbenner, G., Hofer, W.W., Honodel, C.A., Steinberg, D.J., Stroud, J.R., and Weingart, R.C., “Electric Gun: a Versatile Tool for High- Pressure Shock-Wave Research,” Review of Scientific Instruments, Vol. 51, No. 12, 1980, pp. 1676–1681.CrossRefGoogle Scholar
  28. 28.
    28. Froeschner, K.E., Chau, H., Dittbenner, G., Lee, R.S., Mikkelson, K., Steinberg, D., and Weingart, R.C., “Shock Hugoniot Experiments Using an Electric Gun,” Shock Waves in Condensed Matter – 1981, Nellis, W.J., Seaman, L., and Graham, R.A., eds., AIP Press, New York, 1982, pp. 174–178.Google Scholar
  29. 29.
    29. Hawke, R.S., Brooks, A.L., Mitchell, A.C., Fowler, C.M., Peterson, D.R., and Shaner, J.W., “Railguns for Ewuation-of-State Research,” Shock Waves in Condensed Matter – 1981, Nellis, W.J., Seaman, L., and Graham, R.A., eds., AIP Press, New York, 1982, pp. 179–183.Google Scholar
  30. 30.
    30. Nikolayevsky, V.N., (ed.), High-Velocity Shock Phenomena, (trans. from English), Mir Publ., Moscow, 1973.Google Scholar
  31. 31.
    31. Sakharov, A.D., “Magnetoimplosive Generators,” Uspekhi Fizicheskikh Nauk, Vol. 88, No. 4, 1966, pp. 725–734, [English trans., Soviet Physics Uspekhi, Vol. 9, No. 2, 1966, pp. 294–299].Google Scholar
  32. 32.
    32. Anisimov, S.I., Prokhorov, A.M., and Fortov, V.E., “Application of High-Power Lasers to Study Matter at Ultrahigh Pressures,” Uspekhi Fizicheskikh Nauk, Vol. 142, No. 3, 1984, pp. 395–434, [English trans., Soviet Physics Uspekhi, Vol. 27, No. 3, 1984, pp. 181–205.Google Scholar
  33. 33.
    33. Ansimov, S.I., Imas, Ya.A., Romanov, G.S., and Khodyko, Yu.V., Action of High-Power Radiation on Metals, Nauka Publ., Moscow, 1970.Google Scholar
  34. 34.
    34. Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Shock-Wave Phenomena in Condensed Matter, Yanum-K Publ., Moscow, 1996 [see also Kanel, G.I., Razorenov, S.V., and Fortov, V.E., Shock-Wave Phenomena and the Properties of Condensed Matter, Springer-Verlag, New York, 2004].Google Scholar
  35. 35.
    35. Trainor, R.J., Shaner, J.W., Auerbach, J.M., and Holmes, N.C., “Ultrahigh- Pressure Laser-Driven Shock-Wave Experiments in Aluminum,” Physical Review Letters, Vol. 42, No. 17, 1979, pp. 1154–1157.CrossRefGoogle Scholar
  36. 36.
    36. Veeser, L.R., Solem, J.C., and Lieber, A.J., “Impedance-Match Experiments using Laser-Driven Shock Waves,” Applied Physics Letters, Vol. 35, No. 10, 1979, pp. 761–763.CrossRefGoogle Scholar
  37. 37.
    37. Demidov, B.A., and Martynov, A.I., “Experimental Investigation of Shock Waves Excited in Metals by an Intense Relativistic Electron Beam,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 80, No. 3, 1981, pp. 738–744, [English trans., Soviet Physics JETP, Vol. 53, No. 2, 1981, pp. 374–377].Google Scholar
  38. 38.
    38. Bonyushkin, E.K., Zavada, N.I., Novikov, S.A., and Uchayev, A.Ya., Metal Dynamic Failure Kinetics under Pulsed Volume Heating Conditions, RFNCVNIIEF, Sarov, Russia, 1998.Google Scholar
  39. 39.
    39. Dremin, A.N., and Breusov, O.N., “Processes Occurring in Solids Under the Action of Powerful Shock Waves,” Uspekhi Khimii, Vol. 37, No. 5, 1968, pp. 898–916, [English trans., Russian Chemical Reviews, Vol. 37, No. 5, 1968, pp. 392–402].Google Scholar
  40. 40.
    40. Adadurov, G.A., Experimental Study of Chemical Processes under Dynamic Compression Conditions,” Uspekhi Khimii, Vol. 55, No. 4, 1986, pp. 555–578, [English trans., Russian Chemical Reviews, Vol. 55, No. 4, 1986, pp. 282–296].Google Scholar
  41. 41.
    41. Batsanov, S.S., “Inorganic Chemistry of High Dynamic Pressures,” Uspekhi Khimii, Vol. 55, No. 4, 1986, pp. 579–607, [English trans., Russian Chemical Reviews, Vol. 55, No. 4, 1986, pp. 297–315].Google Scholar
  42. 42.
    42. Adadurov, G.A., and Goldanskii, V.I., “Transformations of Condensed Substances under Shock-Wave Compression in Controlled Thermodynamic Conditions,” Uspekhi Khimii, Vol. 50, No. 10, 1981, pp. 1810–1827, [English trans., Russian Chemical Reviews, Vol. 50, No. 10, 1981, pp. 948–957].Google Scholar
  43. 43.
    43. Osipov, R.S., Funtikov, A.I., and Tsyganov, V.A., “Determination of the Thermodynamic Parameters of Shock Compression of Lead, Tin, Copper, and Nickel by Their Melting in Conservation Ampoules,” Teplofizika Vysokikh Temperatur, Vol. 36, No. 4, 1998, pp. 590–595, [English trans., High Temperature, Vol. 36, No. 4, 1998, pp. 566–571].Google Scholar
  44. 44.
    44. Adadurov, G.A., Dremin, A.N., Kanel, G.I., and Pershin, S.V., “Determination of the Shock Wave Parameters in Materials Preserved in Cylindrical Bombs,” Fizika Goreniya i Vzryva, Vol. 3, No. 2, 1967, pp. 281–285, [English trans., Combustion, Explosion, and Shock Waves, Vol. 3, No. 2, 1967, pp. 175–177].Google Scholar
  45. 45.
    45. Adadurov, G.A., Dremin, A.N., and Kanel, G.I., “Mach REffection Parameters for Plexiglas Cylinders,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 2, 1969, pp. 126–128, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 10, No. 2, 1969, pp. 302–305].Google Scholar
  46. 46.
    46. Funtikov, A.I., Osipov, R.S., and Tsyganov, V.A., “Isentropes of Relief of Iron and Austenitic Steel from the State of Shock Compression at a Pressure of 150 GPa,” Teplofizika Vysokikh Temperatur, Vol. 37, No. 6, 1999, pp. 887–894, [English trans., High Temperature, Vol. 37, No. 6, 1999, pp. 857–864].Google Scholar
  47. 47.
    47. Voinov, B.A., Nadykto, B.A., Novikov, S.A., Sinitsyna, L.M., Tkachenko, I.A., and Yukina, N.A., “Study of Structural Changes in Specimens of Diferent Materials Preserved After the Action of Pulsed High Pressures,” Fizika Goreniya i Vzryva, Vol. 27, No. 4, 1991, pp. 109–116, [English trans., Combustion, Explosion, and Shock Waves, Vol. 27, No. 4, 1991, pp. 490–496].Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M.V. Zhernokletov

There are no affiliations available

Personalised recommendations