Skip to main content

Characean Algae: Still a Valid Model System to Examine Fundamental Principles in Plants

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 68))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainsworth CC, Parker J, Buchanan-Wollaston V (1998) Sex determination in plants. Curr Top Dev Biol 38:167–223.

    PubMed  CAS  Google Scholar 

  • Ainsworth CC, Lu J, Winfield M, Parker J (1999) Sex determination by X:autosome dosage: Rumex acetosa (sorrel). In: Ainsworth CC (ed) Sex determination in plants, BIOS Sci Publ, Oxford, pp 121–136.

    Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057.

    PubMed  CAS  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177–182.

    PubMed  CAS  Google Scholar 

  • Bartnik E, Sievers A (1988) In-vivo observation of a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast-growing Chara rhizoids. Planta 176:1–9.

    Google Scholar 

  • Baudenbacher F, Fong LE, Thiel G, Wacke M, Jazbinsek V, Holzer JR, Stampfl A, Trontelj Z (2005) Intracellular axial current in Chara corallina reflects the altered kinetics of ions in cytoplasm under the influence of light. Biophys J 88:690–697.

    PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44.

    PubMed  CAS  Google Scholar 

  • Biskup B, Gradmann D, Thiel G (1999) Calcium release from IP3-sensitve stores initiates action potential in Chara. FEBS Lett 453:72–76.

    PubMed  CAS  Google Scholar 

  • Blancaflor EB (2002) The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul 21:120–136.

    PubMed  CAS  Google Scholar 

  • Boonsirichai K, Guan C, Chen, R, Masson PH (2002) Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu Rev Plant Physiol Plant Mol Biol 53: 421–447.

    CAS  Google Scholar 

  • Braun M (1996a) Immunolocalization of myosin in rhizoids of Chara globularis Thuill Protoplasma 191:1–8.

    CAS  Google Scholar 

  • Braun M (1996b) Anomalous gravitropic response of Chara rhizoids during enhanced accelerations. Planta 199:443–450.

    PubMed  CAS  Google Scholar 

  • Braun M (1997) Gravitropism in tip-growing cells. Planta 203: S11–S19.

    PubMed  CAS  Google Scholar 

  • Braun M (2001) Association of spectrin-like proteins with the actin-organized aggregate of endoplasmic reticulum in the Spitzenkörper of gravitropically tip-growing plant cells. Plant Physiol 125:1611–1620.

    PubMed  CAS  Google Scholar 

  • Braun M (2002) Gravity perception requires statoliths settled on specific plasma-membrane areas in characean rhizoids and protonemata. Protoplasma 219: 150–159.

    PubMed  Google Scholar 

  • Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae–model cells for research on polarized growth and plant gravity sensing. Protoplasma (in press).

    Google Scholar 

  • Braun M, Richter P (1999) Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonemata, but not in downward bending by bowing of Chara rhizoids. Planta 209:414–423.

    PubMed  CAS  Google Scholar 

  • Braun M, Sievers A (1993) Centrifugation causes adaptation of microfilaments; studies on the transport of statoliths in gravity sensing Chara rhizoids. Protoplasma 174:50–61.

    PubMed  CAS  Google Scholar 

  • Braun M, Sievers A (1994) Role of the microtubule cytoskeleton in gravisensing Chara rhizoids. Eur J Cell Biol 63: 289–298.

    PubMed  CAS  Google Scholar 

  • Braun M, Wasteneys GO (1998a) Reorganization of the actin and microtubule cytoskeleton throughout blue-light-induced differentiation of characean protonemata into multicellular thalli. Protoplasma 202:38–53.

    Google Scholar 

  • Braun M, Wasteneys GO (1998b) Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism. Planta 205:39–50.

    PubMed  CAS  Google Scholar 

  • Braun M, Wasteneys GO (2000) Actin in characean rhizoids and protonemata. Tip growth, gravity sensing and photomorphogenesis. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 237–258.

    Google Scholar 

  • Braun M, Buchen B, Sievers A (2002) Actomyosin-mediated statolith positioning in gravisensing plant cells studied in microgravity. J Plant Growth Regul 21:137–145.

    PubMed  CAS  Google Scholar 

  • Braun M, Hauslage J, Czogalla A, Limbach C (2004) Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polarized growth of characean rhizoids. Planta 219:379–388.

    PubMed  CAS  Google Scholar 

  • Buchen B, Braun M, Hejnowicz Z, Sievers A (1993) Statoliths pull on microfilaments. Experiments under microgravity. Protoplasma 172:38–42.

    PubMed  CAS  Google Scholar 

  • Buchen B, Braun M, Sievers A (1997) Statoliths, cytoskeletal elements and cytoplasmic streaming of Chara rhizoids under reduced gravity during TEXUS flights. In: Life sciences experiments performed on sounding rockets (1985–1994). Nordwijk, ESA Publications Division, ESA-SP 1206, pp 71–75.

    Google Scholar 

  • Bulychev A, Vredenberg W (2003) Spatio-temporal patterns of photosystem II activity and plasma-membrane proton flows in Chara corallina cells exposed to overall and local illumination. Planta 218:143–151.

    PubMed  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA, Luengviriya J, Rubin AB, Muller SC. (2004) Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J Membr Biol 202:11–19.

    PubMed  CAS  Google Scholar 

  • Cai W, Braun M, Sievers A (1997) Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats. Acta Biol Exp Sinica 30:147–155.

    PubMed  CAS  Google Scholar 

  • Chailakhyan MK (1979) Genetic and hormonal regulation of growth, flowering and sex expression in plants. Am J Bot 66:717–736.

    CAS  Google Scholar 

  • Ciesielski T (1872) Untersuchungen über die Abwärtskrümmung der Wurzel. Beitr Biol Pflanz 1:1–30.

    Google Scholar 

  • Driss-Ecole D, Jeune B, Prouteau M, Julianus P, Perbal G (2000) Lentil root statoliths reach a stable state in microgravity. Planta 211:396–405.

    PubMed  CAS  Google Scholar 

  • Drobak BK, Franklin-Tong VE, Staiger CJ (2004) The role of actin the cytoskeleton in plant cell signaling. New Phytol 163:13–30.

    CAS  Google Scholar 

  • Durand B, Durand R (1991a) Sex determination and reproductive organ differentiation in Mercurialis. Plant Sci 80:49–65.

    Google Scholar 

  • Durand B, Durand R (1991b) Male sterility and restored fertility in annual mrcuries, relations with sex differentiation. Plant Sci 80:107–118.

    CAS  Google Scholar 

  • Ernst A (1901) Über Pseudohermaphroditismus und andere Mibbildungen der Oogonien bei Nitella syncarpa (Thuill.) Kützing. Flora od allg bot Zeitg 88:1–36.

    Google Scholar 

  • Ernst A (1916) Experimentelle Erzeugung erblicher Parthenogenesis. Z f ind Abstammungs-und Vererbungslehre 17:203–250.

    Google Scholar 

  • Ernst A (1918) Bastardisierung als Ursache der Apogamie im Pflanzenreich. G Fischer-Verlag, Jena, 673 pp.

    Google Scholar 

  • Foissner I (1988a) The relationship of echinate inclusions and coated vesicles on wound healing in Nitella flexilis (Characeae). Protoplasma 142:164–175.

    Google Scholar 

  • Foissner I (1988b) Chlortetracycline-induced formation of wall appositions (callose plugs) in internodal cells of Nitella flexilis (Characeae). J Phycol 24:458–467.

    Google Scholar 

  • Foissner I (1989) PH-dependence of chlortetracycline(CTC)-induced plug formation in Nitella flexilis (Characeae). J Phycol 25:313–318.

    CAS  Google Scholar 

  • Foissner I (1990) Wall appositions induced by ionophore A 23187, CaCl2, LaCl3, and nifedipine in characean cells. Protoplasma 154:80–90.

    CAS  Google Scholar 

  • Foissner I (1992) Effects of dichlorobenzonitrile on the formation of cell wall appositions (plugs) in internodal cells of Chara corallina Klein ex. Willd, em. R.D.W. and Nitella flexilis (L.) Ag. New Phytol 121:447–455.

    CAS  Google Scholar 

  • Foissner I (1998) Localization of calcium ions in wounded characean internodal cells. New Phytol 139:449–458.

    CAS  Google Scholar 

  • Foissner I (2004) Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells. Protoplasma 224:145–157.

    PubMed  CAS  Google Scholar 

  • Foissner I, Wasteneys GO (1994) Injury to Nitella internodal cells alters microtubule organization but microtubules are not involved in the wound response. Protoplasma 182:102–114.

    Google Scholar 

  • Foissner I, Wasteneys GO (1999) Microtubules at wound sites of Nitella internodal cells passively co-align with actin bundles when exposed to hydrodynamic forces generated by cytoplasmic streaming. Planta 208:480–490.

    CAS  Google Scholar 

  • Foissner I, Wasteneys GO (2000) Actin in characean internodal cells. In: Staiger C, Baluska DF, Volkmann D, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publisher, Dordrecht, Boston, London, pp 259–274.

    Google Scholar 

  • Foissner I, Lichtscheidl IK, Wasteneys GO (1996) Actin-based vesicle dynamics and exocytosis during wound wall formation in characean internodal cells. Cell Motil Cytoskel 35:35–48.

    CAS  Google Scholar 

  • Galland P (2002) Tropisms of Avena coleoptiles: sine law for gravitropism, exponential law for photogravitropic equilibrium. Planta 215:779–784.

    PubMed  CAS  Google Scholar 

  • Geitmann A, Emons AM (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245.

    PubMed  CAS  Google Scholar 

  • Graham LE (1993) Origin of land plants. Wiley, New York, 287 pp.

    Google Scholar 

  • Grolig F, Pierson ES (2000) Cytoplasmic streaming: From flow to track. In: Staiger C, Baluska F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 165–181.

    Google Scholar 

  • Haberlandt G (1900) Über die Perzeption des geotropischen Reizes. Ber Dtsch Bot Ges 18: 261–272.

    Google Scholar 

  • Hejnowicz Z, Sievers A (1981) Regulation of the position of statoliths in Chara rhizoids. Protoplasma 108:117–137.

    PubMed  CAS  Google Scholar 

  • Hejnowicz Z, Heinemann B, Sievers A (1977) Tip growth: pattern of growth rate and stress in the Chara rhizoid. Zeitschr Pflanzenphysiol 81:409–424.

    Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187.

    PubMed  CAS  Google Scholar 

  • Hodick D (1993) The protonema of Chara fragilis Desv.: Regenerativeformation, photomorphogenesis, and gravitropism. Bot Acta 106:388–393.

    PubMed  CAS  Google Scholar 

  • Hodick D, Sievers A (1998) Hypergravity can reduce but not enhance the gravitropic response of Chara globularis protonemata. Protoplasma 204:145–154.

    PubMed  CAS  Google Scholar 

  • Hodick D, Buchen B, Sievers A (1998) Statolith positioning by microfilaments in Chara rhizoids and protonemata. Adv Space Res 21:1183–1189.

    PubMed  CAS  Google Scholar 

  • Hoson T, Kamisaka S, Masuda Y, Yamashita M, Buchen B (1997) Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203:S187–S197.

    PubMed  CAS  Google Scholar 

  • Hou G, Kramer VL, Wang Y-S, Chen R, Perbal G, Gilroy S, Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39:113–125.

    PubMed  CAS  Google Scholar 

  • Juarez C, Banks JA (1998) Sex determination in plants. Curr Opin Plant Biol 1:68–72.

    PubMed  CAS  Google Scholar 

  • Kamitsubo E (1972) A “window technique” for detailed observation of characean cytoplasmic streaming. Exp Cell Res 74:613–616.

    PubMed  CAS  Google Scholar 

  • Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. Crit Rev Plant Sci 19:551–573.

    PubMed  CAS  Google Scholar 

  • Knight TA (1806) On the direction of the radicle and germen during the vegetation of seeds. Phil Trans R Soc 99:108–120.

    Google Scholar 

  • Kranz HD, Miks D, Siegler ML, Capesius I, Sense CW, Huss VA (1995) The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences. J Mol Evol 4:74–84.

    Google Scholar 

  • Krause W (1997) Charales (Charophyceae). (Süsswasserflora von Mitteleuropa, Bd. 18), G. Fischer-Verlag, Jena, 202 pp.

    Google Scholar 

  • Kunachowicz A, Luchniak P, Olszewska MJ, Sakowicz T (2001) Comparative karyology, DNA methylation and restriction pattern analysis of male and female plants of the dioecious alga Chara tomentosa (Charophyceae). Eur J Phycol 36:29–34.

    Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149.

    PubMed  CAS  Google Scholar 

  • Lardon A, Aghmir A, Georgiev S, Monéger F, Negrutiu I (1993) The Y chromosome of white campion: sexual dimorphism and beyond. In: Ainsworth CC (ed) Sex determination in plants. BIOS Sci Publ, Oxford, pp 89–100.

    Google Scholar 

  • Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114:789–800.

    PubMed  Google Scholar 

  • Leitz G, Schnepf E, Greulich KO (1995) Micromanipulation of statoliths in gravity-sensing Chara rhizoids by optical tweezers. Planta 197:278–288.

    PubMed  CAS  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556.

    Google Scholar 

  • Limbach C, Hauslage J, Schaefer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139:1030–1040.

    PubMed  CAS  Google Scholar 

  • Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104.

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Smith FA (1973) The formation of alkaline and acid regions at the surface of Chara corallina cells. J Exp Bot 24:1–14.

    CAS  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci 3:32–36.

    Google Scholar 

  • Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352.

    PubMed  CAS  Google Scholar 

  • Marziani G, Caporali E, Spada A (1999) Search for genes involved in asparagus sex determination. In: Ainsworth CC (ed) Sex determination in plants. BIOS Sci Publ, Oxford, pp 149–162.

    Google Scholar 

  • Miller AJ, Sanders D (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326:397–400.

    CAS  Google Scholar 

  • Nemec B (1900) Über die Art der Wahrnehmung des Schwerkraftreizes bei den Pflanzen. Ber Dtsch Bot Ges 18:241–245.

    Google Scholar 

  • Olszewska MJ, Gernand D, Godlewski M, Kunachowicz A (1997) DNA methylation during antheridial filament development and spermiogenesis in Chara vulgaris (Charophyceae) analysed by in situ nick-translation driven by methylation-sensitive restriction enzymes. Eur J Phycol 32:287–291.

    Google Scholar 

  • Othmer HG (1997) Signal transduction and second messenger Systems. In: Othmer HG, Adler FR, Lewis MA, Dallon J (eds) Case studies in mathematical modelling-ecology, physiology and cell biology. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991.

    PubMed  Google Scholar 

  • Padmasree K, Padmavathi L, Raghavendra AS (2002) Essentiality of mitochondrial oxidative metabolism for photosynthesis: optimization of carbon assimilation and protection against photoinhibition. Crit Rev Biochem Mol Biol 37:71–119.

    PubMed  CAS  Google Scholar 

  • Perbal G, Lefrance A, Jeune B, Driss-Ecole D (2004) Mechanotransduction in root gravity sensing cells. Physiol Plant 120:303–311.

    PubMed  CAS  Google Scholar 

  • Plieth C (1995) Estimation of ion concentrations and their variations in cells and tissues of green plants using image analysis as ratiometric fluorescence microscopy and laser Doppler anemometry. PhD thesis University of Kiel, Germany.

    Google Scholar 

  • Reddy ASN (2001) Calcium: silver bullet in signalling. Plant Sci 160:381–404.

    PubMed  CAS  Google Scholar 

  • Schussnig B (1954) Grundriß der Protophytologie, G Fischer, Jena, 310 pp.

    Google Scholar 

  • Shen EYF (1967) Amitosis in Chara. Cytology 32:481–488.

    Google Scholar 

  • Sievers A, Heinemann B, Rodriguez-Garcia MI (1979) Nachweis des subapikalen differentiellen Flankenwachstums im Chara-Rhizoid während der Graviresponse. Zeitschr Pflanzenphysiol 91:435–442.

    CAS  Google Scholar 

  • Sievers A, Buchen B, Volkmann D, Hejnowicz Z (1991a) Role of the cytoskeleton in gravity perception. In: Lloyd CW (ed) The cytoskeletal basis for plant growth and form. Academic Press, London, pp 169–182.

    Google Scholar 

  • Sievers A, Kramer-Fischer M, Braun M, Buchen B (1991b) The polar organization of the growing Chara rhizoid and the transport of statoliths are actin-dependent. Bot Acta 104:103–109.

    PubMed  CAS  Google Scholar 

  • Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1:273–279.

    PubMed  CAS  Google Scholar 

  • Sievers A, Braun B, Monshausen GB (2002) The root cap: structure and function. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots—the hidden half, ed 3. Marcel Dekker, New York, pp 33–47.

    Google Scholar 

  • Tang Y, Stephenson J, Othmer HG (1996) Simplification and analysis of models of calcium dynamics based on InsP3-sensitive calcium channel dynamics. Biophys J 70:246–263.

    PubMed  CAS  Google Scholar 

  • Tazawa M, Kikuyama M. (2003) Is Ca2+ release from internal stores involved in membrane excitation in characean cells? Plant Cell Physiol 44:518–526.

    PubMed  CAS  Google Scholar 

  • Thiel G, Homann U, Gradmann D (1993). Microscopic elements of electrical excitation in Chara: transient activity of Cl- channels in the plasma membrane. J Membrane Biol 134:53–66.

    CAS  Google Scholar 

  • Thiel, G, Wacke M, Foissner I (2002): Ca2+ mobilization from internal stores in electrical membrane excitation in Chara. Prog Bot 64:217–233.

    Google Scholar 

  • Volkmann D, Buchen B, Hejnowicz Z, Tewinkel M, Sievers A (1991) Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets. Planta 185:153–161.

    PubMed  CAS  Google Scholar 

  • Vyskot B (1999) The role of DNA methylation in plant reproductive development. In: Ainsworth CC (ed) Sex determination in plants. BIOS Sci Publ, Oxford, pp 101–120.

    Google Scholar 

  • Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca 2+ liberation during action potential in the giant alga Chara. J Gen Physiol 118:11–21.

    PubMed  CAS  Google Scholar 

  • Wacke M, Hütt M-T, Thiel G (2003) Patterns of membrane excitation in Chara cells in response to periodic stimulation. Nova Acta 332:225–238.

    Google Scholar 

  • Wacke M, Thiel G, Hütt M-T (2003) Ca2+ dynamics during membrane excitation of green alga Chara: model simulations and experimental data. J Membrane Biol 191:179–192.

    CAS  Google Scholar 

  • Williamson RE, Hurley UA (1986) Growth and regrowth of actin bundles in Chara: bundle assembly by mechanisms differing in sensitivity to cytochalasin. J Cell Sci 85:21–32.

    PubMed  CAS  Google Scholar 

  • Wood RD, Imahori K (1965) A revision of the Characeae. J Cramer, Weinheim, 904 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braun, M., Foissner, I., Löhring, H., Schubert, H., Thiel, G. (2007). Characean Algae: Still a Valid Model System to Examine Fundamental Principles in Plants. In: Esser, K., Löttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36832-8_9

Download citation

Publish with us

Policies and ethics