Skip to main content

Extranuclear Inheritance: Virus-Like DNA-Elements in Yeast

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 68))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bateman A, Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299:1113–1119.

    PubMed  CAS  Google Scholar 

  • Banerjee H, Kopvak C, Curley D (1998) Identification of linear DNA plasmids of the yeast Pichia pastoris. Plasmid 40:58–60.

    PubMed  CAS  Google Scholar 

  • Birkeland NK (1994) Cloning, molecular characterization, and expression of the genes encoding the lytic functions of lactococcal bacteriophage phi LC3: a dual lysis system of modular design. Can J Microbiol 40:658–665.

    PubMed  CAS  Google Scholar 

  • Bisaillon M, Lemay G (1997) Viral and cellular enzymes involved in synthesis of mRNA cap structure. Virology 236:1–7.

    PubMed  CAS  Google Scholar 

  • Blaisonneau J, Nosek J, Fukuhara H (1999) Linear DNA plasmid pPK2 of Pichia kluyveri: distinction between cytoplasmic and mitochondrial linear plasmids in yeasts. Yeast 15:781–791.

    PubMed  CAS  Google Scholar 

  • Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940.

    PubMed  CAS  Google Scholar 

  • Bolen PL, Kurtzman CP, Ligon JM, Mannarelli BM, Bothast RJ (1992) Physical and genetic characterization of linear DNA plasmids from the heterothallic yeast Saccharomycopsis crataegensis. Antonie Van Leuwenhoek 61:195–295.

    CAS  Google Scholar 

  • Bolen PL, Eastman EM, Cihak PL, Hayman GT (1994) Isolation and sequence analysis of a gene from the linear DNA plasmid pPacl-2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis. Yeast 10:403–414.

    PubMed  CAS  Google Scholar 

  • Braithwaite DK, Ito J (1993) Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 21:787–802.

    PubMed  CAS  Google Scholar 

  • Broyles SS, Moss B (1987) Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. J Virol 61:1738–1742.

    PubMed  CAS  Google Scholar 

  • Butler AR, O’Donnell RW, Martin VJ, Gooday GW, Stark MJ (1991a) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483–488.

    PubMed  CAS  Google Scholar 

  • Butler AR, Porter M, Stark MJR (1991b) Intracellular expression of Kluyveromyces lactis toxin g subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7:617–625.

    PubMed  CAS  Google Scholar 

  • Butler AR, White JH, Stark MJR (1991c) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137:1749–1757.

    PubMed  CAS  Google Scholar 

  • Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJR (1994) Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 14:6306–6316.

    PubMed  CAS  Google Scholar 

  • Chen WB, Han JF, Jong SC, Chang SC (2000) Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 66:5348–5352.

    PubMed  CAS  Google Scholar 

  • Chou T (2003) Ribosome recycling, diffusion, and mRNA loop formation in translational regulation. Biophysical J 85:755–773.

    CAS  Google Scholar 

  • Cong P, Shuman S (1992) Methyltransferase and subunit association domains of Vaccinia virus mRNA capping enzyme. J Biol Chem 267:16424–16429.

    PubMed  CAS  Google Scholar 

  • Cong P, Shuman S (1993) Covalent catalysis in nucleotidyl transfer: a KTDG motif essential for enzyme–GMP complex formation by mRNA capping enzyme is conserved at the active sites of RNA and DNA ligases. J Biol Chem 268:7256–7260.

    PubMed  CAS  Google Scholar 

  • Cong YS, Yarrow D, Li YY, Fukuhara H (1994) Linear DNA plasmids from Pichia etchellsii, Debaryomyces hansenii and Wingea robertsiae. Microbiology 140:1327–1335.

    PubMed  CAS  Google Scholar 

  • De la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198.

    PubMed  Google Scholar 

  • Deng L, Shuman S (1998) Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev 12:538–546.

    PubMed  CAS  Google Scholar 

  • Dufour E, Mendez J, Lazaro JM, de Vega M, Blanco L, Salas M (2000) An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein. J Mol Biol 304:289–300.

    PubMed  CAS  Google Scholar 

  • Dufour E, Rodriguez I, Lazaro JM, de Vega M, Salas M (2003) A conserved insertion in protein-primed DNA polymerases is involved in primer terminus stabilisation. J Mol Biol 331:781–794.

    PubMed  CAS  Google Scholar 

  • Fichtner L, Schaffrath R (2002) KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Microbiol 44:865–875.

    PubMed  CAS  Google Scholar 

  • Fichtner L, Frohloff F, Burkner K, Larsen M, Breunig KD, Schaffrath R (2002a) Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43:783–791.

    PubMed  CAS  Google Scholar 

  • Fichtner L, Frohloff F, Jablonowski D, Stark MJ, Schaffrath R (2002b) Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Mol Microbiol 45:817–826.

    PubMed  CAS  Google Scholar 

  • Fichtner L, Jablonowski D, Schierhorn A, Kitamoto HK, Stark MJ, Schaffrath R (2003). Elongator’s toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49:1297–1307.

    PubMed  CAS  Google Scholar 

  • Frohloff F, Fichtner L, Jablonowski D, Breuning KD, Schaffrath R (2001) Saccharomyces cerevisiae elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20:1993–2003.

    PubMed  CAS  Google Scholar 

  • Frohloff F, Jablonowski D, Fichtner L, Schaffrath R (2003) Subunit communications crucial for the functional integrity of the yeast RNA polymerase II elongator (g-toxin target (TOT)) complex. J Biol Chem 278:956–961.

    PubMed  CAS  Google Scholar 

  • Fukuda K, Maebuchi M, Takata H, Gunge N (1997) The linear plasmid pDHL1 from Debaryomyces hansenii encodes a protein highly homologous to the pGKL1-plasmid DNA polymerase. Yeast 13:613–620.

    PubMed  CAS  Google Scholar 

  • Fukuda K, Jin-Shan C, Kawano M, Sudo K, Gunge N (2004) Stress responses of linear plasmids from Debaryomyces hansenii. FEMS Microbiol Lett 237:243–248.

    PubMed  CAS  Google Scholar 

  • Fukuhara H (1987) The RF1 gene of the killer DNA of yeast may encode a DNA polymerase. Nucleic Acids Res 15:10046.

    PubMed  CAS  Google Scholar 

  • Fukuhara H (1995) Linear DNA plasmids of yeasts. FEMS Microbiol Lett 131:1–9.

    PubMed  CAS  Google Scholar 

  • Gorbalenya, AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429.

    CAS  Google Scholar 

  • Gunge N (1995) Plasmid DNA and the killer phenomenon in Kluyveromyces. In: Kück, U (ed) Genetics and biotechnology (The mycota, vol 2). Springer-Verlag, Berlin, pp 189–209.

    Google Scholar 

  • Gunge N, Tokunaga M (2004) Linear DNA plasmids and killer system in Kluyveromyces lactis. In: Kück U (ed) Genetics and biotechnology (The mycota II, 2nd edn). Springer-Verlag, Berlin, pp 199–217.

    Google Scholar 

  • Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145:382–390.

    PubMed  CAS  Google Scholar 

  • Gunge N, Fukuda K, Morikawa S, Murakami K, Takeda M, Miwa A (1993) Osmophilic linear plasmids from the salt-tolerant yeast Debaryomyces hansenii. Curr Genet 23:443–9.

    PubMed  CAS  Google Scholar 

  • Gunge N, Takata H, Matsuura A, Fukuda K (2003) Progressive Rearrangement of telomeric sequences added to both the ITR ends of the yeast linear pGKL plasmid. Biol Proceed Online 5:29–42.

    CAS  Google Scholar 

  • Hayman GT, Bolen BL (1991) Linear DNA plasmids of Pichia inositovora are associated with a novel killer toxin activity. Curr Genet 19:389–393.

    PubMed  CAS  Google Scholar 

  • Higman HA, Bourgeois N, Niles EG (1992) The Vaccinia virus mRNA (guanine-N7-)-methyltransferase requires both subunits of the mRNA capping enzyme for activity. J Biol Chem 267:16430–16437.

    PubMed  CAS  Google Scholar 

  • Higman MA, Christen LA, Niles EG (1994) The mRNA (guanine-7) methyltrans ferase domain of the Vaccinia virus mRNA capping enzyme: expression in Escherichia coli and structural and kinetic comparison to the intact capping enzyme. J Biol Chem 269:14974–14981.

    PubMed  CAS  Google Scholar 

  • Hishinuma F, Hirai K (1991) Genome organization of the linear plasmid, pSKL, isolated from Saccharomyces kluyveri. Mol Gen Genet 226:97–106.

    PubMed  CAS  Google Scholar 

  • Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequence of the DNA killer plasmids from yeast. Nucleic Acids Res 12:l7581–7597.

    Google Scholar 

  • Huang B, Johansson MJ, Bystrom AS (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11:424–436.

    PubMed  CAS  Google Scholar 

  • Jablonowski D, Schaffrath R (2002) Saccharomyces cerevisiae RNA polymerase II is affected by Kluyveromyces lactis zymocin. J Biol Chem 277:26276–26280.

    PubMed  CAS  Google Scholar 

  • Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJR, Schaffrath R (2001a) Saccharomyces cerevisiae cell wall chitin, the potential Kluyveromyces lactis zymocin receptor. Yeast 18:1285–1299.

    PubMed  CAS  Google Scholar 

  • Jablonowski D, Frohloff F, Fichtner L, Stark MJR, Schaffrath R (2001b) Kluyveromyces lactis zymocin mode of action is linked to RNA polymerase II function via elongator. Mol Microbiol 42:1095–1105.

    PubMed  CAS  Google Scholar 

  • Jablonowski D, Butler AR, Fichtner L, Gardiner D, Schaffrath R, Stark MJR (2001c) Sit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Genetics 159:1479–1489.

    PubMed  CAS  Google Scholar 

  • Jablonowski D, Fichtner L, Stark MJ, Schaffrath R (2004) The yeast elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Mol Biol Cell 15(3):1459–1469.

    PubMed  CAS  Google Scholar 

  • Jablonowski, D, Zink, S, Mehlgarten, C, Daum, G, Schaffrath, R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 59:677–688.

    PubMed  CAS  Google Scholar 

  • Jankowsky E, Jankowsky A (2000) The DexH/D protein family database. Nucleic Acids Res 28:333–334.

    PubMed  CAS  Google Scholar 

  • Jeske S, Meinhardt F (2006) Autonomous cytoplasmic linear plasmid pPac1–1 of Pichia acaciae: molecular structure and expression studies. Yeast (in press).

    Google Scholar 

  • Jeske S, Tiggemann M, Meinhardt F (2006) Yeast autonomous linear plasmid pGKL2: ORF9 is an actively transcribed essential gene with multiple transcription start points. FEMS Microbiol Lett 255:321–327.

    PubMed  CAS  Google Scholar 

  • Jung GH, Leavitt MC, Ito J (1987) Yeast killer plasmid pGKL1 encodes a DNA polymerase belonging to the family B DNA polymerases. Nucleic Acids Res 15:9088.

    PubMed  CAS  Google Scholar 

  • Kadare G, Haenni AL (1997) Virus encoded RNA helicases. J Virol 71:2583–2590.

    PubMed  CAS  Google Scholar 

  • Kalhor HR, Clarke S (2003) Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 23:9283–92.

    PubMed  CAS  Google Scholar 

  • Kämper J, Meinhardt F, Gunge N, Esser K (1989a) New recombinant linear DNA-elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res 17:1781.

    PubMed  Google Scholar 

  • Kämper J, Meinhardt F, Gunge N, Esser K (1989b) In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres. Mol Cell Biol 9:3931–3937.

    PubMed  Google Scholar 

  • Kämper J, Esser K, Gunge N, Meinhardt F (1991) Heterologous gene expression on the linear DNA killer plasmid from Kluyveromyces lactis. Curr Genet 19:109–118.

    PubMed  Google Scholar 

  • Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA (2004) Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. Mol Cell 16:609–618.

    PubMed  CAS  Google Scholar 

  • Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73:657–704.

    PubMed  CAS  Google Scholar 

  • Kempken F, Hermanns J, Osiewacz HD (1992) Evolution of linear plasmids. J Mol Evol 35:502–513.

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Hirai K, Hishinuma F (1984) The yeast linear DNA killer plasmids, pGKL1 and pGKL2, possess terminally attached proteins. Nucleic Acids Res 12:5685–5692.

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Hirai K, Gunge N, Hishinuma F (1985) Hairpin plasmid—a novel linear DNA of perfect hairpin structure. EMBO J 4:1881–1886.

    PubMed  CAS  Google Scholar 

  • Kim EK, Jeong JH, Youn HS, Koo YB, Roe JH (2000) The terminal protein of a linear mitochondrial plasmid is encoded in the N-terminus of the DNA polymerase gene in white-rot fungus Pleurotus ostreatus. Curr Genet 38:283–290.

    PubMed  CAS  Google Scholar 

  • Kitada K, Gunge N (1988) Palindrome-hairpin linear plasmids possessing only a part of the ORF1 gene of the yeast killer plasmid pGKL1. Mol Gen Genet 215:46–52.

    PubMed  CAS  Google Scholar 

  • Kitada K, Hishinuma F (1987) A new linear DNA plasmid isolated from the yeast Saccharomyces kluyveri. Mol Gen Genet 2006:377–381.

    Google Scholar 

  • Kitamoto HK, Jablonowski D, Nagase J, Schaffrath R (2002) Defects in yeast RNA polymerase II transcription elicit hypersensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Genet Genom 268:49–55.

    CAS  Google Scholar 

  • Klassen R, Meinhardt F (2002) Linear plasmids pWR1A and pWR1B of the yeast Wingea robertsiae are associated with a killer phenotype. Plasmid 48:142–148.

    PubMed  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2003) Structural and functional analysis of the killer element pPin1–3 from Pichia inositovora. Mol Genet Genomics 270:190–199.

    PubMed  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2005) Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol 7:393–401.

    PubMed  CAS  Google Scholar 

  • Klassen R, Tontsidou L, Larsen M, Meinhardt F (2001) Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast 18:953–961.

    PubMed  CAS  Google Scholar 

  • Klassen R, Jablonowski D, Schaffrath R, Meinhardt F (2002) Genome organization of the linear Pichia etchellsii plasmid pPE1A: evidence for expression of an extracellular chitin binding protein homologous to the a-subunit of the Kluyveromyces lactis killer toxin. Plasmid 47:224–233.

    PubMed  CAS  Google Scholar 

  • Klassen R, Teichert S, Meinhardt F (2004) Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation. Mol Microbiol 53: 263–273.

    PubMed  CAS  Google Scholar 

  • Klassen R, Jablonowski D, Stark MJR, Schaffrath R, Meinhardt F (2006) Mating type locus control of killer toxins from Kluyveromyces lactis and Pichia acaciae. FEMS Yeast Res DOI: 10.1111/j.1567–1364.2005.00006.x.

  • Koonin EV (1991) Similarities in RNA helicases. Nature 352:290.

    PubMed  CAS  Google Scholar 

  • Larsen M, Meinhardt F (2000) Kluyveromyces lactis killer system: identification of a new gene encoded by pGKL2. Curr Genet 38:271–275.

    PubMed  CAS  Google Scholar 

  • Larsen M, Gunge N, Meinhardt F (1998) Kluyveromyces lactis killer plasmid pGKL2: Evidence for a viral-like capping enzyme encoded by OFR3. Plasmid 40:243–246.

    PubMed  CAS  Google Scholar 

  • Leffers H, Gropp F, Lottspeich F, Zillig W, Garrett RA (1989) Sequence, organisation, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. J Mol Biol 206:1–17.

    PubMed  CAS  Google Scholar 

  • Ligon JM, Bolen PL, Hill DS, Bothast RJ, Kurtzman CP (1990) Physical and biological characterization of linear DNA plasmids of the yeast Pichia inositovora. Plasmid 2:185–194.

    Google Scholar 

  • Lu J, Huang B, Esberg A, Johansson MJ, Bystrom AS (2005) The Kluyveromyces lactis g-toxin targets tRNA anticodons. RNA 11:1648–1654.

    PubMed  CAS  Google Scholar 

  • Mao X, Shuman S (1994) Intrinsic RNA (guanine-7) methyltransferase activity of the Vaccinia capping enzyme D1 subunit is stimulated by the D12 subunit: identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J Biol Chem 269:24472–24479.

    PubMed  CAS  Google Scholar 

  • Martin SA, Paoletti E, Moss B (1975) Purification of mRNA guanylyltransferase and mRNA (guanine-7) methyltransferase from Vaccinia virions. J Biol Chem 250:9322–9329.

    PubMed  CAS  Google Scholar 

  • McCracken DA, Martin VJ, Stark MJ, Bolen PL (1994) The linear-plasmid-encoded toxin produced by the yeast Pichia acaciae: characterization and comparison with the toxin of Kluyveromyces lactis. Microbiology 140:425–431.

    PubMed  CAS  Google Scholar 

  • McNeel DG, Tamanoi F (1991) Terminal region recognition factor 1, a DNA-binding protein recognizing the inverted terminal repeats of the pGKl linear DNA plasmids. Proc Natl Acad Sci USA 88:11398–11402.

    PubMed  CAS  Google Scholar 

  • Mehlgarten C, Schaffrath R (2003) Mutant casein kinase I (Hrr25p/Kti14p) abrogates the G1 cell cycle arrest induced by Kluyveromyces lactis zymocin in budding yeast. Mol Genet Genomics 269:188–196.

    PubMed  CAS  Google Scholar 

  • Mehlgarten C, Schaffrath R (2004) After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cell Microbiol 6:569–180.

    PubMed  CAS  Google Scholar 

  • Meinhardt F, Rohe R (1993) Extranuclear inheritance: linear protein-primed replicating genomes in plants and microorganisms. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in botany, vol 54. Springer-Verlag, Berlin, Heidelberg, New York, pp 51–70.

    Google Scholar 

  • Meinhardt F, Schaffrath R (2001) Extranuclear inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in botany, vol 62. Springer-Verlag, Berlin, Heidelberg, New York, pp 51–70.

    Google Scholar 

  • Meinhardt F, Kempken F, Kamper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17:89–95.

    PubMed  CAS  Google Scholar 

  • Niles EG, Christen L (1993) Identification of the Vaccinia virus mRNA guanyltransferase active site lysine. J Biol Chem 268:2986–24989.

    Google Scholar 

  • Niles EG, Condit R, Caro P, Davidson K, Matusick L, Seto J (1986) Nucleotide sequence and genetic map of the 16 kb Vaccinia virus HindIII D fragment. Virology 153:96–112.

    PubMed  CAS  Google Scholar 

  • Niles EG, Lee-Chen S, Shuman S, Moss B, Broyles S (1989) Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. Virology 172:513–522.

    PubMed  CAS  Google Scholar 

  • Niwa O, Sakaguchi K, Gunge N (1981) Curing of the killer deoxyribonucleic acid plasmids of Kluyveromyces lactis. J Bacteriol 148:988–990.

    PubMed  CAS  Google Scholar 

  • Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P Svejstrup JQ (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3:109–118.

    PubMed  CAS  Google Scholar 

  • Paoletti, E, Rosemond-Hornbeak H, Moss B (1974) Two nucleic acid-dependent nucleoside triphosphate phosphohydrolases from vaccinia virus: purification and characterization. J Biol Chem 249:3273–3280.

    CAS  Google Scholar 

  • Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745.

    PubMed  CAS  Google Scholar 

  • Pring DR, Levings CS III, Hu WWL, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA 74:2904–2908.

    PubMed  CAS  Google Scholar 

  • Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17:841–853.

    PubMed  CAS  Google Scholar 

  • Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168: 353–358.

    PubMed  CAS  Google Scholar 

  • Rodriguez JF, Kahn JS, Esteban M (1986) Molecular cloning, encoding sequence, and expression of vaccinia nucleic acid-dependent nucleoside triphosphatase gene. Proc Natl Acad Sci USA 83:9566–9570.

    PubMed  CAS  Google Scholar 

  • Rodriguez I, Lazaro JM, Blanco L, Kamtekar S, Berman AJ, Wang J, Steitz TA, Salas M, de Vega M (2005) A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity. Proc Natl Acad Sci USA 102:6407–6412.

    PubMed  CAS  Google Scholar 

  • Rohe M, Schrage K, Meinhardt F (1991) The linear plasmid pMC3–2 from Morchella conica is structurally related to adenoviruses. Curr Genet 20:527–533.

    PubMed  CAS  Google Scholar 

  • Romanos M, Boyd A (1988) A transcriptional barrier to expression of cloned toxin genes of the linear plasmid k1 of Kluyveromyces lactis: evidence that native k1 has novel promoters. Nucleic Acids Res 16:7333–7350.

    PubMed  CAS  Google Scholar 

  • Schaffrath R, Meacock PA (1996) A cytoplasmic gene-shuffle system in Kluyveromyces lactis: use of epitope tagging to detect a killer plasmid-encoded gene product. Mol Microbiol 19:545–554.

    PubMed  CAS  Google Scholar 

  • Schaffrath R, Meacock PA (2001) An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 18:1239–1247.

    PubMed  CAS  Google Scholar 

  • Schaffrath R, Meinhardt F (2004) Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. In: Schmitt M, Schaffrath R (eds) Topics in current genetics vol 11. Microbial protein toxins, pp 133–155.

    Google Scholar 

  • Schaffrath R, Soond SM, Meacock PA (1995) The DNA and RNA polymerase genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology 141:2591–2599.

    PubMed  CAS  Google Scholar 

  • Schaffrath R, Meinhardt F, Meacock PA (1996) Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. Mol Gen Genet 250:286–294.

    PubMed  CAS  Google Scholar 

  • Schaffrath R, Meinhardt F, Meacock PA (1997) ORF7 of yeast plasmid pGKL2: analysis of gene expression in vivo. Curr Genet 31:190–192.

    PubMed  CAS  Google Scholar 

  • Schaffrath R, Sasnauskas K, Meacock PA (2000) Use of gene shuffles to study the cytoplasmic transcription system operating on Kluyveromyces lactis linear DNA plasmids. Enzyme Microb Technol 26:664–670.

    PubMed  CAS  Google Scholar 

  • Schickel J, Helmig C, Meinhardt F (1996) Kluyveromyces lactis killer system. Analysis of cytoplasmic promoters of linear plasmids. Nucleic Acids Res 24:1879–1886.

    PubMed  CAS  Google Scholar 

  • Schmid SR, Linder P (1992) D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6(3):283–291.

    PubMed  CAS  Google Scholar 

  • Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276.

    PubMed  CAS  Google Scholar 

  • Schründer J, Meinhardt F (1995) An extranuclear expression system for analysis of cytoplasmic promoters of yeast linear killer plasmids. Plasmid 33:139–151.

    PubMed  Google Scholar 

  • Shepherd HS (1992) Linear, non-mitochondrial plasmids of Alternaria alternata. Curr Genet 21:169–172.

    PubMed  CAS  Google Scholar 

  • Shuman S (1989) Functional domains of Vaccinia virus mRNA capping enzyme: analysis by limited tryptic digestion. J Biol Chem 264:9690–9695.

    PubMed  CAS  Google Scholar 

  • Shuman S (1995) Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acids Res Mol Biol 50:101–129.

    CAS  Google Scholar 

  • Shuman S, Hurwitz J (1981) Mechanism of mRNA capping by Vaccinia virus guanylyltransferase: characterization of an enzyme-guanylate intermediate. Proc Natl Acad Sci USA 78:187–191.

    PubMed  CAS  Google Scholar 

  • Shuman S, Morham SG (1990) Domain structure of Vaccinia virus mRNA capping enzyme: activity of the Mr 95, 000 subunit expressed in Escherichia coli. J Biol Chem 265:11967–11972.

    PubMed  CAS  Google Scholar 

  • Shuman S, Schwer B (1995) RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyltransferases. Mol Microbiol 17:405–410.

    PubMed  CAS  Google Scholar 

  • Shuman S, Surks M, Furneaux H, Hurwitz J (1980) Purification and characterisation of a GTP-pyrophosphate exchange activity from Vaccinia virions: association of the GTP pyrophosphate exchange activity with Vaccinia mRNA guanylyltransferase-RNA (guanine-7-) methyltrans ferase complex (capping enzyme). J Biol Chem 255:11588–11598.

    PubMed  CAS  Google Scholar 

  • Sor F, Fukuhara H (1985) Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr Genet 9:147–155.

    CAS  Google Scholar 

  • Stam J C, Kwakman J, Meijer M, Stuitje AR (1986) Efficient isolation of the linear DNA killer plasmids of Kluyveromyces lactis: evidence for location and expression in the cytoplasm and characterization of their terminally bound proteins. Nucleic Acids Res 14, 6871–6884.

    PubMed  CAS  Google Scholar 

  • Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5:1995–2002.

    PubMed  CAS  Google Scholar 

  • Stark MJ, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12:6011–6030.

    PubMed  CAS  Google Scholar 

  • Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1–29.

    PubMed  CAS  Google Scholar 

  • Takeda M, Hiraishi H, Takesako T, Tanase S, Gunge N (1996) The terminal protein of the linear DNA plasmid pGKL2 shares an N-terminal domain with the plasmid encoded DNA polymerase. Yeast 12:241–246.

    PubMed  CAS  Google Scholar 

  • Takita MA, Castilho-Valavicius B (1993) Absence of cell wall chitin in Saccharomyces cerevisiae leads to resistance to Kluyveromyces lactis killer toxin. Yeast 9:589–598.

    PubMed  CAS  Google Scholar 

  • Thuriaux P, Sentenac A (1992) Yeast nuclear RNA polymerases. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae. Cold Spring Habor Press, New York, pp 1–48.

    Google Scholar 

  • Tiggemann M, Jeske S, Larsen M, Meinhardt F (2001) Kluyveromyces lactis cytoplasmic plasmid pGKL2: Heterologous expression of Orf3p and prove of guanylyltransferase and mRNA-triphosphatase activities. Yeast 18:815–825.

    PubMed  CAS  Google Scholar 

  • Tokunaga M, Wada N, Hishinuma F (1987) Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15:1031–1046.

    PubMed  CAS  Google Scholar 

  • Tokunaga M, Kawamura A, Hishinuma F (1989) Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17:3435–3446.

    PubMed  CAS  Google Scholar 

  • Tokunaga M, Kawamura A, Kitada K, Hishinuma F (1990) Secretion of killer toxin encoded on the linear DNA plasmid pGKL1 from Saccharomyces cerevisiae. J Biol Chem 265:17274–17280.

    PubMed  CAS  Google Scholar 

  • Tommasino M (1991) Killer system of Kluyveromyces lactis: the open reading frame 10 of the pGK12 plasmid encodes a putative DNA binding protein. Yeast 7:245–252.

    PubMed  CAS  Google Scholar 

  • Tommasino M, Ricci S, Galeotti C (1988) Genome organization of the killer plasmid pGKL2 from Kluyveromyces lactis. Nucleic Acids Res 16:5863–5978.

    PubMed  CAS  Google Scholar 

  • Turmel M, Bellemare G, Lee RW, Lemieux C (1986) A linear DNA molecule of 5z9 kilobase-pairs is highly homologous to the chloroplast DNA in the green algae Chlamydomonas moewusii. Plant Mol Biol 6:313–319.

    CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the a- and b-subunits of ATP synthetase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951.

    PubMed  CAS  Google Scholar 

  • Wilson DW, Meacock PA (1988) Extranuclear gene expression in yeast: evidence for a plasmid encoded RNA-polymerase of unique structure. Nucleic Acids Res 16:8097–8112.

    PubMed  CAS  Google Scholar 

  • Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2001) RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 276:32743–32749.

    PubMed  CAS  Google Scholar 

  • Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4:123–128.

    PubMed  CAS  Google Scholar 

  • Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18:77–80.

    PubMed  CAS  Google Scholar 

  • Zink S, Mehlgarten C, Kitamoto HK, Nagase J, Jablonowski D, Dickson RC, Stark MJR Schaffrath R (2005) Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. Eukaryot Cell 4:879–889.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeske, S., Meinhardt, F., Klassen, R. (2007). Extranuclear Inheritance: Virus-Like DNA-Elements in Yeast. In: Esser, K., Löttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36832-8_5

Download citation

Publish with us

Policies and ethics