Skip to main content

Molecular Origins of Elastomeric Friction

  • Chapter

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ariano, The Coefficients of Friction Between Rubber & Various Materials. Part II — Gripping Friction of Rubber Belting, India Rubber Journal 79(2), 56–8 (1930).

    Google Scholar 

  2. J.B. Derieux, The Coefficients of Friction Between Rubber & Various Materials. Part II — Gripping Friction of Rubber Belting, J. Elisha Mitchell Scientific Society 50, 53–5 (1934).

    CAS  Google Scholar 

  3. T.R. Dawson and B.D. Porritt, Rubber: Physical and Chemical Properties, 381–386 (1935).

    Google Scholar 

  4. B.Z. Newby, M.K. Chaudhury, and H.R. Brown, Macroscopic Evidence of the Effect of Interfacial Slippage on Adhesion, Science 269, 1407–8 (1995).

    Article  ADS  CAS  Google Scholar 

  5. B. Newby and M.K. Chaudhury, Friction in Adhesion, Langmuir 14, 4865–90 (1998).

    Article  Google Scholar 

  6. S.L. Aggarwal, I.G. Hargis, R.A. Livigni, H.J. Fabris, and L.F. Marker, in Advances in Elastomers and Rubber Elasticity (Plenum, New York, 1986).

    Google Scholar 

  7. A.N. Theodore, M.A. Samus, and P.C. Killgoar, Environmentally Durable Elastomer Materials for Windshield Wiper Blades, Ind. Eng. Chem. Res. 31(12), 2759–64 (1992).

    Article  CAS  Google Scholar 

  8. C.W. Extrand, A.N. Gent, and S.Y. Kaang, Friction of a rubber wedge sliding on glass, Rubber Chemistry and Technology 64(1), 108–17 (1991).

    CAS  Google Scholar 

  9. F.L. Roth, R.L. Driscoll, and W.L. Holt, Frictional Properties of Rubber, J. Research of the National Bureau of Standards 28(4), 439–62 (1942).

    Google Scholar 

  10. P. Thirion, Les coefficients d’ adherence du caoutchouc., Revue Generale du Caoutchouc 23(5), 101–6 (1946).

    CAS  Google Scholar 

  11. P.J. Papenhuyzen, Wrijvingsproeven in verband met het slippen van autobanden, De Ingenieur V75, 53 (1938).

    Google Scholar 

  12. A. Schallamach, The Velocity and Temperature Dependence of Rubber Friction, Proceedings of the Physical Society B 65, 657–61 (1952).

    Article  ADS  Google Scholar 

  13. A. Schallamach, The load dependence of rubber friction, Proceedings of the Physical Society B 66, 386–92 (1952).

    Article  ADS  Google Scholar 

  14. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Oxford University Press, 1950).

    Google Scholar 

  15. H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates, J. Chemical Physics 4, 283–91 (1936).

    Article  CAS  Google Scholar 

  16. J.A. Greenwood and D. Tabor, The Friction of Hard Sliders on Lubricated Rubber: The Importance of Deformation Losses, Proceedings of the Physical Society 71, 989–1001 (1958).

    Article  Google Scholar 

  17. A.M. Bueche and D.G. Flom, Surface friction and dynamic mechanical properties of polymers, Wear 2(3), 168–82 (1959).

    Article  Google Scholar 

  18. K.A. Grosch, The relation between the friction and visco-elastic properties of rubber, Proceedings of the Royal Society A 274, 21–39 (1963).

    Article  CAS  Google Scholar 

  19. M.L. Williams, R.F. Landel, and J.D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and other Glass-forming Liquids, J. Am. Chem. Soc. 77, 3701–7 (1955).

    Article  CAS  Google Scholar 

  20. A. Schallamach, A theory of dynamic rubber friction, Wear 6, 375–82 (1963).

    Article  Google Scholar 

  21. K. Vorvolakos and M.K. Chaudhury, The effects of molecular weight and temperature on the kinetic friction of silicone rubbers, Langmuir 19, 6778–87 (2003).

    Article  CAS  Google Scholar 

  22. T. Kontorova and Y.I. Frenkel, On the theory of plastic deformation and twinning, Soviet Phys. JEPT 13, 1–10 (1938).

    Google Scholar 

  23. Y.B. Chernyak and A.I. Leonov, On the Theory of Adhesive Friction of Elastomers, Wear 108, 105–38 (1986).

    Article  CAS  Google Scholar 

  24. A.R. Savkoor, On the friction of rubber, Wear 8, 222–37 (1965).

    Article  CAS  Google Scholar 

  25. K.C. Ludema and D. Tabor, The friction and visco-elastic properties of polymeric solids, Wear 9, 329–48 (1966).

    Article  CAS  Google Scholar 

  26. A. Schallamach, How does rubber slide?, Wear 17, 301–12 (1971).

    Article  Google Scholar 

  27. A.D. Roberts and S.A. Jackson, Sliding friction of rubber, Nature 257, 118–20 (1975).

    Article  ADS  CAS  Google Scholar 

  28. J.I. Siepmann and I.R. McDonald, Monte Carlo Simulation of the Mechanical Rexation of a Self-Assembled Monolayer, Phys. Rev. Lett. 70, 453–6 (1993).

    Article  PubMed  ADS  CAS  Google Scholar 

  29. T. Bonner and A. Baratoff, Molecular dynamics study of scanning force microscopy on self-assembled monolayers, Surf. Sci. 377–379, 1082–6 (1997).

    Article  Google Scholar 

  30. P.T. Mikulski and J.A. Harrison, Packing-density effects on the friction of n-alkane monolayers, J. Am. Chem. Soc. 123, 6873–81 (2001).

    Article  CAS  Google Scholar 

  31. R.M. Overney, H. Takano, M. Fujihira, W. Paulus, and H. Ringsdorf, Anisotropy in friction and molecular stick-slip motion, Phys. Rev. Lett. 72, 3546–49 (1994).

    Article  PubMed  ADS  CAS  Google Scholar 

  32. A. Ulman, An Introduction to Ultrathin Organic Films (Academic Press, New York, 1991).

    Google Scholar 

  33. G.A. Tomlinson, Philos. Mag. Ser. 7, 905 (1929).

    CAS  Google Scholar 

  34. O.K. Dudko, A.E. Filippov, J. Klafter, and M. Urbakh, Dynamic force spectroscopy: a Fokker-Planck approach, Chem. Phys. Lett. 352, 499–504 (2002).

    Article  CAS  Google Scholar 

  35. Y. Sang, M. Dube, and M. Grant, Thermal Effects on Atomic Friction, Phys. Rev. Lett. 87, 174301/1–4 (2001).

    Google Scholar 

  36. F. Heslot, T. Baumberger, B. Perrin, B. Caroli, and C. Caroli, Creep, stickslip, and dry-friction dynamics: experiments and a heuristic model, Phys. Rev. E 49, 4973–88 (1994).

    Article  ADS  Google Scholar 

  37. S. Sills and R.M. Overney, Creeping friction dynamics and molecular dissipation mechanisms in glassy polymers, Phys. Rev. Lett. 91, 095501(1–4) (2003).

    Google Scholar 

  38. J.A. Hammerschmidt, W.L. Gladfelter, and G. Haugstad, Probing polymer viscoelastic relaxations with temperature-controlled friction force microscopy, Macromolecules 32, 3360–7 (1999).

    Article  CAS  Google Scholar 

  39. B. Gotsmann, S. Sills, U. Duerig, J. Frommer, and C. Hawker, Controlling nanowear in a polymer by confining segmental relaxation, Nano Lett. (2006).

    Google Scholar 

  40. H.R. Brown, Chain Pullout and Mobility Effects in Friction and Lubrication, Science 263, 1411–3 (1994).

    Article  ADS  CAS  Google Scholar 

  41. A. Casoli, M. Brendle, J. Schultz, A. Philippe, and G. Reiter, Friction Induced by Grafted Polymeric Chains, Langmuir 17(2), 388–98 (2001).

    Article  CAS  Google Scholar 

  42. A. Ghatak, K. Vorvolakos, H. She, D. Malotky, and M.K. Chaudhury, Interfacial Rate Processes in Adhesion and Friction, J. Physical Chemistry B 104(17), 4018–30 (2000).

    Article  CAS  Google Scholar 

  43. Y. Inn and S.-Q. Wang, Hydrodynamic slip: Polymer adsorption and desorption at melt/solid interfaces, Physical Review Letters 76(3), 467–70 (1996).

    Article  PubMed  ADS  CAS  Google Scholar 

  44. S. Hirz, A. Subbotin, C. Frank, and G. Hadziioannou, Static and kinetic friction of strongly confined polymer films under shear, Macromolecules 29(11), 3970–4 (1996).

    Article  CAS  Google Scholar 

  45. S. Sills, T. Gray., and R.M. Overney, Molecular dissipation phenomena of nanoscopic friction in the heterogeneous relaxation regime of a glass former, J. Chem. Phys. 123, 134902 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. G.D. Patterson, C.P. Lindsey, and J.R. Stevens, Depolarized Rayleigh spectroscopy of polystyrene near the glass-rubber transition, J. Chem. Phys. 70, 643–5 (1979).

    Article  ADS  CAS  Google Scholar 

  47. V.N. Pokrovskii, Mesoscopic theory of polymer dynamics (Kluwer Academic Publishers, Dordrecht, 2000).

    Google Scholar 

  48. K.C. Ludema and D. Tabor, The friction and visco-elastic properties of polymer solids, Wear 9, 329–48 (1966).

    Article  CAS  Google Scholar 

  49. C.M. Roland and R. Casalini, Temperature dependence of local segmental motion in polystyrene and its variation with molecular weight, J. Chem. Phys. 119, 1838–42 (2003).

    Article  ADS  CAS  Google Scholar 

  50. M. Appel and G. Fleischer, Investigation of the chain length dependence of self-diffusion of poly(dimethylsiloxane) and poly(ethylene oxide) in the melt with. pulsed field gradient NMR, Macromolecules 26, 5520–5 (1993).

    Article  CAS  Google Scholar 

  51. P.B. Leezenburg, M.D. Frayer, and C.W. Frank, Photophysical studies of probes bound to crosslinked junctions in poly(dimethyl silozane) elastomers and nanocomposites, Pure & Appl. Chem. 68, 1381–8 (1996).

    Article  Google Scholar 

  52. A.D. Stein, D.A. Hoffmann, A.H. Marcus, P.B. Leezenburg, and C.W. Frank, Dynamics in Poly(dimethylsiloxane) Melts: Flouresence Depolarization Measurements of Probe Chromophore Orientational Relaxation, J. Phys. Chem 96, 5255–63 (1992).

    Article  CAS  Google Scholar 

  53. S.E. Sills, R.M. Overney, B. Gotsmann, and J. Frommer, Strain shielding and confined plasticity in thin polymer films: Impacts on thermomechanical data. storage, Tribo. Lett. 19, 9–15 (2005).

    Article  CAS  Google Scholar 

  54. H.B. Dong, T. Blawert, C. Mordike, B. L., Plasma immersion ion implantation of UHMWPE, J. Mater. Sci. Lett. 19(13), 1147–9 (2000).

    Article  CAS  Google Scholar 

  55. J. Wang, E. Stroup, X. Wang, and A. J. D., Study of PEO on LTI Carbon Surfaces by Ellipsometry and Tribometry, Proc. SPIE-Int. Soc. Opt. Eng. Int. Conf. Thin Film Phys. Appl. Pt. 2, 835–41 (1991).

    Google Scholar 

  56. T. Murayama and C.R. McMillin, Dynamic mechanical properties of elastomers for use in circulatory assist devices, J. Appl. Polym. Sci. 28(6), 1871–7 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sills, S., Vorvolakos, K., Chaudhury, M.K., Overney, R.M. (2007). Molecular Origins of Elastomeric Friction. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36807-6_30

Download citation

Publish with us

Policies and ethics