Skip to main content

Surface-Damage Mechanisms: from Nano- and Microcontacts to Wear of Materials

  • Chapter
Fundamentals of Friction and Wear

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.P. Jost, Lubrication (tribology)-A report of the present position and industry’s needs, Dept. of Science and Education, H. M. Stationery Office, London, U.K. (1966).

    Google Scholar 

  2. H.P. Jost, Economic impact of tribology, Mechanical Engineering, August, 26–33 (1975).

    Google Scholar 

  3. E. Rabinowicz, Friction and Wear of Materials. 2nd edn, John Wiley and Sons (1995).

    Google Scholar 

  4. H. Liu and B. Bhushan, Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy, 100, 391–412 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. S.S. Perry and W.T. Tysoe, Frontiers of fundamental tribological research, Tribology Letters, 19(3), 151–161 (2005).

    Article  Google Scholar 

  6. R. Colaço and R. Vilar, A model for the abrasive wear of metallic matrix particle-reinforced materials, Wear, 254(7–8), 625–634 (2003).

    Article  CAS  Google Scholar 

  7. A Strategy for Tribology in Canada, National Research Council of Canada, Canada (1986).

    Google Scholar 

  8. An investigation on the application of tribology in China, Tribology Institute of the Chinese Mechanical Engineering Society, China (1986).

    Google Scholar 

  9. J. Krim, Surface science and the atomic scale origins of friction: what once was old is new again, Surface Science, 500, 741–758 (2002).

    Article  CAS  Google Scholar 

  10. J.B. Adams, L.G. Hector, D.J. Siegel, H. Yu and J. Zhong, Adhesion, lubrication and wear on the atomic scale, Surface and Interface Analysis, 31, 619–626 (2001).

    Article  CAS  Google Scholar 

  11. I.M. Hutchings, Tribology: friction and wear of engineering materials, Edward Arnold (1992).

    Google Scholar 

  12. B. Bushan, An introduction to tribology, John Wiley and Sons, Inc. (2002).

    Google Scholar 

  13. J.A. Greenwood and J.B. Williamson, Contact of nominally flat surfaces, Proceedings of the Royal Society of London, A295, 300–319 (1966).

    ADS  Google Scholar 

  14. G. Binnig, C.F. Quate and C. Gerber, Atomic Force Microscope, Physical Review Letters, 56(9), 930–933 (1986).

    Article  PubMed  ADS  Google Scholar 

  15. S. Sundararajan and B. Bhushan, Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force friction force microscopy, Wear, 225–229, 678–689 (1999).

    Article  Google Scholar 

  16. B. Bhushan, Nano to microscale wear and mechanical characterization using scanning probe microscopy, Wear, 251, 1105–1123 (2001).

    Article  Google Scholar 

  17. R. Kaneko, K. Nonaka and K. Yasuda, Scanning Tunneling Microscopy and Atomic Force Microscopy for Nanotribology, Journal of Vacuum Science & Technology A-vacuum surfaces and films, 6(2), 291–292 (1988).

    Article  ADS  Google Scholar 

  18. Z. Jiang, C.-J. Lu, D.B. Bogy and T. Miyamoto, An investigation of the experimental conditions and characteristics of a nanowear test, Wear, 181–183 777–783 (1995).

    Google Scholar 

  19. S. Miyake, T. Miyamoto and R. Kaneko, Increase of nanometer-scale wear of polished chemical-vapor-deposited diamond films due to nitrogen ion implantation, Nuclear Instruments and Methods in Physics Research B-beam interactions with materials & atoms, 108, 70–74 (1996).

    Article  ADS  CAS  Google Scholar 

  20. K.-H. Chung, Y.-H. Lee, D.-E. Kim, J. Yoo and S. Hong, Tribological characteristics of probe tip and PZT media for AFM-based recording technology, IEEE Transactions on Magnetics, 41(2), 849–854 (2005).

    Article  CAS  Google Scholar 

  21. S. Graça, R. Colaço and R. Vilar, Using atomic force microscopy to retrieve nanomechanical surface properties of materials, Materials Science Forum, 514–516, 1598–1602 (2006).

    Article  Google Scholar 

  22. A.R. Machcha, M.H. Azarian and F.E. Talke, An investigation of nano-wear during contact recording, Wear, 197, 211–220 (1996).

    Article  CAS  Google Scholar 

  23. E. Gnecco, R. Bennewitz and E. Meyer, Abrasive wear on the atomic scale, Physical Review Letters, 88(21), 215501/1–215501/4 (2002).

    Article  ADS  CAS  Google Scholar 

  24. W. Gulbinski, T. Suszko and D. Pailharey, High load AFM friction and wear experiments on V2O5 thin films, Wear, 254, 988–993 (2003).

    Article  CAS  Google Scholar 

  25. J.Y. Park, D.F. Ogletree, M. Salmeron, C.J. Jenks and P.A. Thiel, Friction and adhesion properties of clean and oxidized Al-Ni-Co decagonal quasicrystals: a UHV atomic force microscopy/scanning tunneling microscopy study, Tribology Letters, 17(3), 629–636 (2004).

    Article  CAS  Google Scholar 

  26. J. Drelich, G.W. Tormoen and E.R. Beach, Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope, Journal of Colloid and Interface Science, 280, 484–497 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. H. Gao, Y. Huang, W.D. Nix and J.W. Hutchinson, Mechanism-based strain gradient plasticity-I. Theory, Journal of the Mechanics and Physics of Solids, 47, 1239–1263 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  28. Y.G. Wey and J.W. Hutchinson, Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 45(8), 1253–1273 (1997).

    Article  MathSciNet  Google Scholar 

  29. G. Elssner, D. Korn, R.M. Cannon and M. Rühle, Fracture properties of interfacially doped Nb-Al2O3 bicrystals: I, fracture characteristics, Acta Materialia, 50(15), 3881–3901 (2002).

    Article  Google Scholar 

  30. K.-H. Zum Gahr, Microstructure and Wear of Materials, Elsevier Scientific Publishing Company (1987).

    Google Scholar 

  31. H. Luth, Surfaces and interfaces of solids, Springer-Verlag (1993).

    Google Scholar 

  32. F.P. Bowden, A.J.W. Moore and D. Tabor, The plowing and adhesion of sliding metals, Journal of Applied Physics, 14, 80–91 (1943).

    Article  Google Scholar 

  33. G.I. Finch, A.G. Quarrekk and J.S. Roebuck, The Beilby Layer, Proc. of the Royal Society of London, 145(855), 676–681 (1934).

    Article  ADS  Google Scholar 

  34. B.W.E. Avient and H. Wilman, New features of the abrasion process shown by soft metals: the nature of mechanical polishing, British Journal of Applied Physics, 13, 521–526 (1962).

    Article  ADS  Google Scholar 

  35. L.H. Gerner, Diffraction of electrons by metal surfaces, Physical Review, 43(9), 724–726 (1933).

    Article  ADS  Google Scholar 

  36. D.M. Turley and L.E. Samuels, The nature of mechanically polished surfaces of copper, Materials Characterization, 39(2–5), 399–418 (1997).

    Article  Google Scholar 

  37. K.L. Johnson, K. Kendall and D. Roberts, Surface Energy and the Contact of Elastic Solids, Proceedings of the Royal Society of London, A 324, 301–313 (1971).

    ADS  Google Scholar 

  38. K.N.G. Fuller and D. Tabor, The effect of surface roughness on the adhesion of elastastic solids, Proceedings of the Royal Society of London, A 345, 327–342 (1975).

    ADS  Google Scholar 

  39. T.R. Thomas, Rough surfaces, Longman, London and New York (1982).

    Google Scholar 

  40. L. Zhou, M. Beck, H. Gatzen, K. Altshuler and F. Talke, Slider vibration reduction using slider surface texture, Microsystem Technologies-micro-and nanosystems-information storage and processing systems, 11(8–10), 857–866 (2005).

    CAS  Google Scholar 

  41. T. Hisakado and T. Tsukisoe, Effect of surface roughness on transient wear, Journal of the Japan Society of Lubrication Engineers, 21(4), 228–235 (1976).

    Google Scholar 

  42. S. Gantiand B. Bhushan, Generalized fractal analysis and its application to engineering surfaces, Wear, 180, 17–34 (1995).

    Article  Google Scholar 

  43. H.H. Gatzen and M. Beck, Wear of single crystal silicon as a function of surface roughness, Wear, 254, 907–910 (2003).

    Article  CAS  Google Scholar 

  44. X. Wang, K. Kato and K. Adachi, Running-in effect on the load-carrying capacity of a water-lubricated SiC thrust bearing, Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, 219((J2)), 117–124 (2005).

    Article  Google Scholar 

  45. M.A. Fortes, R. Colaço and M.F. Vaz, Contact mechanics of cellular solids, Wear, 230, 1–10 (1999).

    Article  CAS  Google Scholar 

  46. D. Tabor, Lubrication and Wear, in Surface and Colloid Science, E. Matijevic, Ed. John Wiley. 245–312 (1972).

    Google Scholar 

  47. R. Colaço and R. Vilar, On the influence of retained austenite in the abrasive wear behavior of a laser surface melted tool steel, Wear, 258(1–4), 225–231 (2005).

    Article  CAS  Google Scholar 

  48. R. Holm, Electrical contacts, H. Gerber Pub, Stockholm (1946).

    Google Scholar 

  49. J.F. Archard, Contact and rubbing of flat surfaces, Journal of Applied Physics, 24(8), 981–988 (1953).

    Article  ADS  Google Scholar 

  50. D.A. Rigney, Some thoughts on sliding wear, Wear, 152 187–192 (1992).

    Article  CAS  Google Scholar 

  51. D. Tabor, The hardness of metals. Oxford Classic Texts, Clarendon Press (1951).

    Google Scholar 

  52. E. Rabinowicz, Friction and wear of materials, John Wiley and Sons (1965).

    Google Scholar 

  53. A.G. Evans, Abrasive wear of ceramics, American Ceramic Society Bulletin 56(3): 292–292 1977, 56 (3), 292—292 (1977).

    Google Scholar 

  54. U. Landman, W.D. Luedtke and E.M. Ringer, Atomistic mechanisms of adhesive contact formation and interfacial processes, Wear, 153(1), 3–30 (1992).

    Article  CAS  Google Scholar 

  55. J.A. Harrison, R.J. Colton, C.T. White and D.W. Brenner, Effect of atomic-scale surface roughness on friction-a molecular-dynamics study of diamond surfaces, Wear, 168(1–2), 127–133 (1993).

    Article  CAS  Google Scholar 

  56. R. Bassani and M. D’Acunto, Nanotribology: tip-sample wear under adhesive contact, Tribology international, 33, 443–452 (2000).

    Article  Google Scholar 

  57. M. D’Acunto, Wear and diffusive processes, Tribology international, 36, 553–558 (2003).

    Article  Google Scholar 

  58. M. D’Acunto, Theoretical approach for the quantification of wear mechanisms on the nanoscale, Nanotechnology, 15, 795–801 (2004).

    Article  ADS  CAS  Google Scholar 

  59. S.C. Lim and M.F. Ashby, Wear-mechanism maps, Acta Metallurgica, 35(1), 1–24 (1987).

    Article  CAS  Google Scholar 

  60. C.L. Kelchner, S.J. Plimpton and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Physical Review B, 58(17), 11085–11088 (1998).

    Article  ADS  CAS  Google Scholar 

  61. J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton and S.M. Foiles, Surface step effects on nanoindentation Physical Review Letters, 87(16), paper 165507 (2001).

    ADS  CAS  Google Scholar 

  62. I. Szlufarska, R.K. Kalia, A. Nakano and P. Vashishta, Atomistic mechanisms of amorphization during nanoindentation of SiC: A molecular dynamics study, Physical Review B, 71(17), paper 174113 (2005).

    Google Scholar 

  63. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles and W.D. Nix, Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation, Journal of the Mechanics and Physics of Solids, 51(5), 901–920 (2003).

    Article  MATH  CAS  Google Scholar 

  64. N.A. Fleck and J.W. Hutchinson, A phenomenological theory to for strain gradient effects in plasticity, Journal of the Mechanics and Physics of Solids, 41(12), 1825–1857 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  65. K.W. McElhaney, J.J. Vlassak and W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, Journal of Materials Research, 13(5), 1300–1306 (1998).

    Article  ADS  CAS  Google Scholar 

  66. Y. Liu and A.H.W. Ngan, Depth dependence of hardness in copper single crystals measured by nanoindentation, Scripta Materialia, 44, 237–241 (2001).

    Article  CAS  Google Scholar 

  67. N.A. Stelmashenko, M.G. Walls, L.M. Brown and Y.V. Milan, Microindentations on W and Mo oriented single crystals-an STM study, Acta Metallurgica et Materialia, 41(10), 2855–2865 (1993).

    Article  CAS  Google Scholar 

  68. Q. Ma and D.R. Clarke, Size dependent hardness of silver single crystals, Journal of Materials Research, 10(4), 853–863 (1995).

    Article  ADS  CAS  Google Scholar 

  69. A.A. Elmoustafa and D.S. Stone, Indentation size effect in polycrystalline FCC metals, Acta Materialia, 50(14), 3641–3650 (2002).

    Article  Google Scholar 

  70. S. Graça, R. Colaço and R. Vilar, Indentation size effect in laser clad nickel and cobalt, (to be published).

    Google Scholar 

  71. S.J. Bull, On the origins and mechanisms of the indentation size effect, Z. Metallkd, 94(7), 787–792 (2003).

    CAS  Google Scholar 

  72. H. Li, A. Ghosh, Y.H. Han and R.C. Bradt, The frictional component of the Indentation size effect in low load microhardness testing, Journal of Materials Research, 8(5), 1028–1032 (1993).

    Article  ADS  CAS  Google Scholar 

  73. J.G. Swadener, A. Misra, R.G. Hoagland and A. Nastasi, A mechanistic description of combined hardening and size effects, Scripta Materialia, 47(5), 343–348 (2002).

    Article  CAS  Google Scholar 

  74. H. Gao and Y. Huang, Geometrically necessary dislocation and size-dependent plasticity, Scripta Materialia, 48 113–118 (2003).

    Article  CAS  Google Scholar 

  75. W.D. Nix and H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, Journal of Mechanics and Physics of Solids, 46(3), 411–425 (1998).

    Article  MATH  CAS  Google Scholar 

  76. T.-Y. Zhang and W.-H. Xu, Surface effects on nanoindentation, Journal of Material Research, 17(7), 1715–1720 (2002).

    Article  CAS  Google Scholar 

  77. I.L. Jager, Surface free energy-a possible source of error in nanohardness?, Surface Science, 565(2–3), 173–179 (2004).

    Article  ADS  CAS  Google Scholar 

  78. F.R.N. Nabarro and J.P. Hirth, Dislocations in solids, ed. F.R.N. Nabarro and J.P. Hirth, Vol. Volume 11, Elsevier (2002).

    Google Scholar 

  79. M.F. Ashby, The deformation of plastically non-homogeneous alloys, Philosphical Magazine, 21 399–424 (1970).

    Article  CAS  Google Scholar 

  80. J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metallurgica, 1(2), 153–162 (1953).

    Article  CAS  Google Scholar 

  81. N.A. Fleck, G.M. Muller, M.F. Ashby and J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42(2), 475–487 (1994).

    Article  CAS  Google Scholar 

  82. N.A. Fleck and J.W. Hutchinson, Strain gradient plasticity, Advances in Applied Mechanics, 33 295–361 (1997).

    Article  Google Scholar 

  83. R.W. Carpick and M. Salmeron, Scratching the surface: fundamental investigations of tribology with atomic force microscopy, Chemical Review, 97, 1163–1194 (1997).

    Article  CAS  Google Scholar 

  84. B. Bhushan, Nanotribology and nanomechanics, Wear, 259, 1507–1531 (2005).

    Article  CAS  Google Scholar 

  85. A.G. Khursudov, K. Kato and H. Koide, Wear of the AFM diamond tip sliding against silicon, Wear, 203–204, 22–27 (1997).

    Article  Google Scholar 

  86. K.-H. Chung, Y.H. Lee and D.-E. Kim, Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip, Ultramicroscopy, 102, 161–171 (2005).

    Article  PubMed  CAS  Google Scholar 

  87. R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, M. Guggisberg, M. Bammerlin and H.-J. Güntherodt, Nanotribology: an UHV-SFM study on thin films of C60 and AgBr, Surface Science, 338(1–3), 247–260 (1995).

    Article  Google Scholar 

  88. P.E. Sheehan, The wear kinetics of NaCl under dry nitrogen and at low humidities, Chemical Physics Letters, 410(1–3), 151–155 (2005).

    Article  CAS  Google Scholar 

  89. E. Gnecco, R. Bennewitz, A. Socoliuc and E. Meyer, Friction and wear on the atomic scale, Wear, 254, 859–862 (2003).

    Article  CAS  Google Scholar 

  90. A. Socoliuc, E. Gnecco, R. Bennewitz and E. Meyer, Ripple formation induced in localized abrasion, Physical Review B, 68, paper 115416 (2003).

    Article  ADS  CAS  Google Scholar 

  91. K.-H. Chung and D.-E. Kim, Fundamental investigation of micro wear rate using an atomic force microscope, Tribology Letters, 15(2), 135–144 (2003).

    Article  CAS  Google Scholar 

  92. B. Bhushan and A.V. Kulkarni, Effect of normal load on microscale friction measurements, Thin Solid Films, 278(1–2), 49–56 (1996).

    Article  CAS  Google Scholar 

  93. J. Hu, X.-D. Xiao, D.F. Ogletree and M. Salmeron, Atomic scale friction and wear of mica, Surface Science, 327 358–370 (1995).

    Article  CAS  Google Scholar 

  94. S. Miyake, 1 nm deep mechanical processing of muscovite mica by atomic force microscopy, Applied Physics Letters, 67(20), 2925–2927 (1995).

    Article  ADS  CAS  Google Scholar 

  95. D.D. Woodland and W.N. Unertl, Initial wear in nanometer-scale contacts on polystyrene, Wear, 203–204, 685–691 (1997).

    Article  Google Scholar 

  96. S.P. Ho, R.W. Carpick, T. Boland and M. LaBerge, Nanotribology of CoCr-UHMWPE TJR prosthesis using atomic force microscopy, Wear, 253, 1145–1155 (2002).

    Article  CAS  Google Scholar 

  97. J.S.S. Wong, H.-J. Sue, K.-Y. Zeng, R.K.Y. Li and Y.-W. Mai, Scratch damage of polymers in nanoscale, Acta Materialia, 52(2), 431–443 (2004).

    Article  CAS  Google Scholar 

  98. Z.G. Jiang, C.J. Lu, D.B. Bogy and T. Miyamoto, An investigation of the experimental conditions and characteristics of a nano-wear test, Wear, 181, 777–783 (1995).

    Google Scholar 

  99. Z.G. Jiang, C.J. Lu, D.B. Bogy and T. Miyamoto, Dependence of nano-friction and nano-wear on loading force for sharp diamond tips sliding on Si, Mn-Zn ferrite and Au, Journal of Tribology-Transactions of the ASME, 117(2), 328–333 (1995).

    Article  CAS  Google Scholar 

  100. W. Lu and K. Komvopoulos, Nanomechanical and nanotribological properties of carbon, chromium, and titanium carbide ultrathin films, Journal of Tribology-Transactions of the ASME, 123(4), 717–724 (2001).

    Article  CAS  Google Scholar 

  101. J.M. Helt and J.D. Batteas, Wear of mica under aqueous environments: direct observation of defect nucleation by AFM, Langmuir, 21, 633–639 (2005).

    Article  PubMed  CAS  Google Scholar 

  102. D.F. Wang and K. Kato, Nano-scale fatigue wear of carbon nitride coatings: part I-wear properties, Journal of Tribology: Transactions of the ASME, 125 430–436 (2003).

    Article  CAS  Google Scholar 

  103. D.F. Wang and K. Kato, Nano-scale fatigue wear of carbon nitride coatings: part II-wear mechanisms, Journal of Tribology-Transactions of the ASME, 125 437–444 (2003).

    Article  CAS  Google Scholar 

  104. U. Beerschwinger, T. Albrecht, D. Mathieson, R.L. Reuben, S.J. Yang and M. Taghizadeh, Wear at microscope scales and light loads for MEMS applications, Wear, 181 426–435 (1995).

    Google Scholar 

  105. S. Sundararajan and B. Bhushan, Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear, 217 251–261 (1998).

    Article  CAS  Google Scholar 

  106. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond and Related Materials, 10(11), 1952–1961 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Colaço, R. (2007). Surface-Damage Mechanisms: from Nano- and Microcontacts to Wear of Materials. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36807-6_21

Download citation

Publish with us

Policies and ethics