Skip to main content

NanoMechanics: Elasticity in Nano-Objects

  • Chapter
Fundamentals of Friction and Wear

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Z.W. Pan, Z.R. Dai, and Z.L. Wang, Nanobelts of Semiconducting Oxides, Science 291, 1947 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  3. X. Duan, Y. Huang, Y. Cui, J.F. Wang, and C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409, 66 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Single-and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447 (1998).

    Article  ADS  CAS  Google Scholar 

  5. C. Gómez-Navarro, P. J. d. Pablo, and J. Gómez-Herrero, Radial electromechanical properties of carbon nanotubes, Adv. Mater. 16, 549 (2004).

    Article  CAS  Google Scholar 

  6. B. Cappella and G. Dietler, Force-distance curves by atomic force microscopy, Surf. Sci. Rep. 34, 1 (1999).

    Article  CAS  Google Scholar 

  7. H.J. Hertz, On the contact of elastic solids, Reine Angew. Math 92, 156 (1882).

    Google Scholar 

  8. M. Radmacher, M. Fritz, and P.K. Hansma, Imaging soft samples with the atomic-force microscope-gelatin in water and propanol, Biophys. J. 69, 264(1995).

    Article  PubMed  CAS  Google Scholar 

  9. H.W. Wu, T. Kuhn, and V.T. Moy, Mechanical properties of l929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking, Scanning 20, 389 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland, and P.K. Hansma, Measuring the Viscoelastic Properties of Human Platelets with the Atomic Force Microscope, Biophysical Journal 70, 556 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. B.J. Briscoe, K.S. Sebastian, and M.J. Adams, The effect of indenter geometry on the elastic response to indentation, J. Phys. D 27, 156 (1994).

    Article  Google Scholar 

  12. A.B.M. et al., ?, J. Biochem 34, 1545 (2001).

    Google Scholar 

  13. F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips, Physical Review E 72, 021914 (2005).

    Article  ADS  CAS  Google Scholar 

  14. B.V. Derjaguin, V.M. Muller, and Y.P.T. Toporov, Effect of contact deformations on adhesion of particles, J. Colloid Interface Sci. 53, 314 (1975).

    Article  CAS  Google Scholar 

  15. K.L. Johnson, K. Kendall, and A.D. Roberts, Surface energy and contact of elastic solids, Proc. R. Soc. A 324, 301 (1971).

    Article  ADS  CAS  Google Scholar 

  16. D. Maugis and H.M. Pollock, Surface forces, deformation and adherence at metal microcontacts, ActaMetall 32, 1323 (1984).

    CAS  Google Scholar 

  17. K. Shull, Contact mechanics and the adhesion of soft solids, MATERIALS SCIENCE & ENGINEERING R-REPORTS 36, 1 (2002).

    Article  Google Scholar 

  18. J.R. Barber and M. Ciavarella, Contact mechanics, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 37, 29 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Schmauder, Computational mechanics, ANNUAL REVIEW OF MATERIALS RESEARCH 32, 437 (2002).

    Article  CAS  Google Scholar 

  20. C. Tsakmakis, Description of plastic anisotropy effects at large deformations — Part I: restrictions imposed by the second law and the postulate of Il’iushin, INTERNATIONAL JOURNAL OF PLASTICITY 20, 167 (2004).

    Article  MATH  Google Scholar 

  21. I. Kragelsky, M. Dobychin, and V. Kombalov, Friction and wear calculation methods (New York: Pergamon Press, ADDRESS, 1982).

    Google Scholar 

  22. J. Greenwood and J. Williamson, Contact of nominally flat surfaces, Proc.Roy.Soc.Lond. A295, 300 (1966).

    ADS  Google Scholar 

  23. P. Nayak, Random process model of rough surfaces, ASME J Lubr Tecnol 93,398 (1971).

    Article  Google Scholar 

  24. J. Ogilvy, Numerical simulations of friction between contacting rough surfaces, J.Phys. D. 24, 2098 (1991).

    Article  ADS  CAS  Google Scholar 

  25. J. Sugimura, Stochastic modeling of surface roughness, JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS 43, 933 (1998).

    Google Scholar 

  26. P. Meakin, The growth of rough surfaces and interfaces, PHYSICS REPORTSREVIEW SECTION OF PHYSICS LETTERS 235, 189 (1993).

    ADS  CAS  Google Scholar 

  27. J. Gao, W.D. Luedtke, D. Gourdon, M. Ruths, J.N. Israelachvili, and U. Landman, Frictional forces and Amontons’ law: From the molecular to the macroscopic scale, JOURNAL OF PHYSICAL CHEMISTRY B 108, 3410 (2004).

    Article  CAS  Google Scholar 

  28. A. Majumdar and B. Bhushan, Fractal Model of Elastic-Plastic Contact Between Rough Surfaces, Journal of Tribology-Transactions of the ASME 113,1 (1991).

    Article  Google Scholar 

  29. H. Zahouani, R. Vargiolu, and J.L. Loubet, Fractal models of surface topography and contact mechanics, Math. Comput.Modell. 28, 517 (1998).

    Article  MATH  Google Scholar 

  30. W. Yan and K. Komvopoulos, Contact Analysis of Elastic-Plastic fractal surfaces, J. Appl. Phys. 84, 3617 (1998).

    Article  ADS  CAS  Google Scholar 

  31. J.C. Chung and J.F. Lin, Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces, Transactions of the ASME 126, 646 (2004).

    Article  Google Scholar 

  32. B.N.J. Persson, Elastoplastic Contact between Randomly Rough Surfaces, Physical Review Letters 87, 116101 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  33. K.N.G. Fuller and D. Tabor, Effect of surface-roughness on adhesion of elastic solids, Proc.R.Soc.Lond A 345, 327 (1975).

    Article  ADS  Google Scholar 

  34. B.N.J. Persson and E. Tosatti, The effect of surface roughness on the adhesion of elastic solids, Journal of Chemical Physics 115, 5597 (2001).

    Article  ADS  CAS  Google Scholar 

  35. R. Buzio, C. Boragno, and U. Valbusa, Contact mechanics and friction of fractal surfaces probed by atomic force microscopy, Wear 254, 917 (2003).

    Article  CAS  Google Scholar 

  36. B. Luan and M. Robbins, The breakdown of continuum models for mechanical contacts, Nature 435, 929 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  37. O. Miesbauer, M. Gotzinger, and W. Peukert, Molecular dynamics simulations of the contact between two NaCl nano-crystals: adhesion, jump to contact and indentation, Nanotechnology 14, 371 (2003).

    Article  ADS  CAS  Google Scholar 

  38. L.-O. Heim, M. Kappl, and H.-J. Butt, Tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements, Langmuir 20,2760 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. J. Hutter, Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements, Langmuir 21, 2630 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman, and E. Riedo, Water molecules confined in sub-nanometer gaps, submitted to Nature (2005).

    Google Scholar 

  41. S. Garcia-Manyes, A. Guell, P. Gorostiza, and F. Sanz, Nanomechanics of silicon surfaces with atomic force microscopy: An insight to the first stages of plastic deformation, J. Chem. Phys. 123, 114711 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. M. Rost, L. Crama, P. Schakel, E. van Tol, G. van Velzen-Williams, C. Overgauw, H. ter Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A. Katan, K. Schoots, R. Schumm, W. van Loo, T.H. Oosterkamp, and J. Frenken, Scanning probe microscopes go video rate and beyond, Rev. Sci. Instr. 76, 053710 (2005).

    Article  CAS  Google Scholar 

  43. B. Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Heidelberg, 2004).

    Book  Google Scholar 

  44. A. Kueng, C. Kranz, A. Lugstein, E. Bertagnolli, and B. Mizaikoff, AFM-Tip-Integrated Amperometric Microbiosensors: High-Resolution Imaging of Membrane Transport, Angewandte Chemie Int. Ed. 44, 3419 (2005).

    Article  CAS  Google Scholar 

  45. E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971 (1997).

    Article  CAS  Google Scholar 

  46. P. Poncharal, Z.L. Wang, D. Urgarte, and W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283,1513 (1999).

    Article  PubMed  ADS  CAS  Google Scholar 

  47. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.W. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, and L. Forró, Elastic and shear moduli of single-walled carbon nanotube rope, Phys. Rev. Lett. 82, 944 (1999).

    Article  ADS  CAS  Google Scholar 

  48. J.H. Song, X. Wang, E. Riedo, and Z. Wang, Elastic Property of Vertically Aligned Nanowires, Nano Letters 5, 1954 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. W. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7, 1564 (1992).

    Article  ADS  CAS  Google Scholar 

  50. W. Oliver, Alternative technique for analyzing instrumented indentation data, Journal of Materials Research 16, 3202 (2001).

    Article  ADS  CAS  Google Scholar 

  51. J. Pethica, R. Hutchings, and W. Oliver, Hardness measurement at penetration depths as small as 20-nm, Philosophical Magazine A 48, 593 (1983).

    Article  CAS  Google Scholar 

  52. E.T. Lilleodden, W. Bonin, J. Nelson, J.T. Wyrobek, and W.W. Gerberich, In-situ imaging of Mu-N load indents into gas, J. of Mat. Res, 10, 2162 (1995).

    Article  ADS  CAS  Google Scholar 

  53. C. Schuh, J. Mason, and A. Lund, Quantitative Insight into Dislocation Nucleation from High-temperature Nanoindentation Experiments, Nature Materials 4, 617 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  54. N. Burnham and R. Colton, J. Vac. Sci. Tech. A 7, 2906 (1989).

    Article  ADS  CAS  Google Scholar 

  55. T. Bell, J. Field, and M. Swain, Elastic plastic characterization of thin-films with spherical indentation, Thin Solid Films 220, 289 (1992).

    Article  Google Scholar 

  56. C.A. Clifford and M. Seah, Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation, Appl. Surf. Sci. 252, 1915 (2005).

    Article  CAS  Google Scholar 

  57. T. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon, Twisting and stretching single DNA molecules, Prog. in Biophys. & Mol. Biol. 74, 115(2000).

    Article  CAS  Google Scholar 

  58. S.B. Smith, L. Finzi, and C. Bustamante, Direct Mechanical Measurements of the Elasticity of Single DNA Molecules by Using Magnetic Beads, Science 258, 1122 (1992).

    Article  PubMed  ADS  CAS  Google Scholar 

  59. T. Strick, J.-F. Allemand, D. Bensimon, and V. Croquette, Behavior of supercoiled DNA, Biophys. J. 74, 2016 (1998).

    Article  PubMed  CAS  Google Scholar 

  60. F. Assi, R. Jenks, J. Yang, C. Love, and M. Prentiss, Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers, J. Appl. Phys. 92, 5584 (2002).

    Article  ADS  CAS  Google Scholar 

  61. A. Bausch, F. Ziemann, A. Boulbitch, K. Jacobson, and E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry, Biophys. J. 75, 2038 (1995).

    Article  Google Scholar 

  62. N. Wang, J. Butler, and D. Ingber, Mechanotransduction across the cell-surface and through the cytoskeleton, Science 260, 1124 (1993).

    Article  PubMed  ADS  CAS  Google Scholar 

  63. C. Haber and D. Wirtz, Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instr. 71, 4561 (2000).

    Article  ADS  CAS  Google Scholar 

  64. K. Svoboda and S. Block, Optical trapping of metallic Rayleigh particles, Opt. Lett. 19, 930 (1994).

    Article  ADS  CAS  Google Scholar 

  65. P. Ke and M. Gu, Characterization of trapping force on metallic Mie particles, Appl. Opt. 38, 160 (1999).

    Article  ADS  CAS  Google Scholar 

  66. L. Chislain, N. Switz, and W. Webb, Measurements of small forces using and optical trap, Rev. Sci. Instr. 65, 2762 (1994).

    Article  ADS  Google Scholar 

  67. R. Litvinov, H. Shuman, J. Bennett, and J. Weisel, Binding strength and activation state of single fibrinogen-integrin pairs on living cells, Proc. Natl. Acad. Sci. 99, 7426 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  68. F. Gittes and C. Schmidt, Signals and noise in micromechanical measurements, Methods Cell. Biol. 55, 129 (1998).

    Article  PubMed  CAS  Google Scholar 

  69. A. Pralle, M. Prummer, E. Florin, E. Stelzer, and J. Horber, Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light, Microsc. Res. Tech. 44, 378 (1999).

    Article  PubMed  CAS  Google Scholar 

  70. D. Grier, A revolution in optical manipulation, Nature 424, 810 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  71. V. Bangert and P. Mansfield, Magnetic-field gradient coils for NMR imaging, J. Phys. E 15, 235 (1982).

    Article  ADS  Google Scholar 

  72. Y. Liu, D. Cheng, G. Sonek, M. Berns, C. Chapman, and B. Tromberg, Evidence for localized cell heating induced by infrared optical tweezers, Biophys. J. 68, 2137 (1995).

    Article  PubMed  CAS  Google Scholar 

  73. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288 (1986).

    Article  ADS  CAS  Google Scholar 

  74. Y. Harada and T. Asakura, Radiation forces on a dielectric sphere in the Rayleigh scattering regime, Opt. Commun. 124, 529 (1996).

    Article  ADS  CAS  Google Scholar 

  75. E. Dufresne and D. Grier, Optical tweezer arrays and optical substrates created with diffractive optics, Rev. Sci. Instr. 69, 1974 (1998).

    Article  ADS  CAS  Google Scholar 

  76. L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. Bryant, and K. Dholakia, Controlled rotation of optically trapped microscopic particles, Science 292, 912 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  77. V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, Optically controlled three-dimensional rotation of microscopic objects, Appl. Phys. Lett. 82, 829 (2003).

    Article  ADS  CAS  Google Scholar 

  78. J. Curtis, B. Koss, and D. Grier, Dynamic holographic optical tweezers, Opt. Commun. 207, 169 (2002).

    Article  ADS  CAS  Google Scholar 

  79. J. Curtis and D. Grier, Structure of optical vortices, Phys. Rev. Lett. 90, 133901 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  80. L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M.D. Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. Pavone, Three-dimensional magneto-optic trap for micro-object manipulation, Opt. Lett. 26, 1359 (2001).

    Article  ADS  CAS  Google Scholar 

  81. M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles, Nature 394, 348 (1998).

    Article  ADS  CAS  Google Scholar 

  82. A.L. Porta and M. Wang, Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles, Phys. Rev. Lett. 92, 190801 (2004).

    Article  PubMed  CAS  Google Scholar 

  83. J. Joykutty, V. Mathur, V. Venkataraman, and V. Natarajan, Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation, Phys. Rev. Lett. 95, 193902 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  84. P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, and P.K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2, 103 (1991).

    Article  ADS  Google Scholar 

  85. E. Meyer, R. Overney, K. Dransfeld, and T. Gyalog, Friction and Rheology on the Nanometer Scale (World Scientific, Singapore, 2002).

    Google Scholar 

  86. R.W. Carpick, D.F. Ogletree, and M. Salmeron, Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Appl. Phys. Lett. 70, 1548 (1997).

    Article  ADS  CAS  Google Scholar 

  87. M.A. Lantz, S. J. O’Shea, M.E. Welland, and K.L. Johnson, Simultaneous force and conduction measurements in atomic force microscopy, Phys. Rev. B 55(56), 10776 (15345) (1997).

    Article  ADS  CAS  Google Scholar 

  88. M.F. Yu, T. Kowaleweski, and R.S. Ruoff, Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force, Phys. Rev. Lett. 85, 1456 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  89. W. Shen, B. Jiang, B.S. Han, and S.-s. Xie, Investigation of the radial compression of carbon nanotubes with a scanning probe microscope, Phys. Rev. Lett. 84, 3634 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  90. A.P. Boresi and O.M. Sidebottom, Advanced Mechanics of Materials (John Wiley & Sons, 5th Ed., ADDRESS, 1993).

    Google Scholar 

  91. G. Briggs, Acoustic microscopy (Oxford University Press, Oxford, 1992).

    Google Scholar 

  92. B. Cretin and F. Stahl, Scanning microdeformation microscopy, Appl. Phys. Lett. 62, 829 (1993).

    Article  ADS  Google Scholar 

  93. U. Rabe and W. Arnold, Acoustic microscopy by atomic force microscopy, Appl. Phys. Lett. 64, 1493 (1994).

    Article  ADS  Google Scholar 

  94. E. Dupas, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 2000.

    Google Scholar 

  95. N. Burnham, A. Kulik, G. Gremaud, P. Gallo, and F. Oulevey, Scanning local-acceleration microscopy, J. Vac. Sci. Techn. B 14, 794 (1996).

    Article  CAS  Google Scholar 

  96. F. Oulevey, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 1999.

    Google Scholar 

  97. G. Rochat, Y. Leterrier, C. Plummer, J. Manson, R. Szoszkiewicz, and A. Kulik, Effect of substrate crystalline morphology on the adhesion of plasma enhanced chemical vapor deposited thin silicon oxide coatings on polyamide, J. Appl. Phys. 95, 5429 (2004).

    Article  ADS  CAS  Google Scholar 

  98. O. Kolosov and K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an atomic force microscope, Jpn. J. Appl. Phys. 32, 22 (1993).

    Article  Google Scholar 

  99. R. Szoszkiewicz, B. Bhushan, B.D. Huey, A. Kulik, and G. Gremaud, Correlations between Adhesion Hysteresis and Friction at Molecular Scales, J. Chem. Phys. 122.

    Google Scholar 

  100. R. Szoszkiewicz, A. Kulik, and G. Gremaud, Quantitative measure of nanoscale adhesion hysteresis by Ultrasonic Force Microscopy, J. Chem. Phys. 122, 134706 (2005).

    Article  PubMed  CAS  Google Scholar 

  101. R. Szoszkiewicz, B. Bhushan, B.D. Huey, A. Kulik, and G. Gremaud, Adhesion hysteresis and friction at nanometer and micrometer lengths, accepted in J. Appl. Phys. (2006).

    Google Scholar 

  102. T. Cuberes, G. Briggs, and O. Kolosov, AFM-modes for non-linear detection of ultrasonic vibration (Oxford University Press, Oxford, 1998).

    Google Scholar 

  103. F. Dinelli, M. Castell, D. Ritchie, N. Mason, G. Briggs, and O. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy, Phil. Mag. A 80, 2299 (2000).

    Article  ADS  CAS  Google Scholar 

  104. F. Dinelli, N. Burnham, A. Kulik, P. Gallo, G. Gremaud, and W. Benoit, Mechanical properties studied at the nanoscale using Scanning Local-Acceleration Microscopy (SLAM), J. Phys IV 6, 731 (1996).

    Google Scholar 

  105. K. Yamanaka, UFM observation of lattice defects in highly oriented pyrolytic graphite, Thin Solid Films 273, 116 (1996).

    Article  CAS  Google Scholar 

  106. O. Kolosov, M.R. Castell, C.D. Marsh, and G.A.D. Briggs, Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy, Phys. Rev. Lett. 81, 1046 (1998).

    Article  ADS  CAS  Google Scholar 

  107. F. Dinelli, H.E. Assender, and N. Takeda, Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM), Surf. Interf. Anal. 27, 562 (1999).

    Article  CAS  Google Scholar 

  108. K. Porfyrakis, O. Kolosov, and H. Assender, AFM and UFM surface characterization of rubber-toughened poly(methyl methacrylate) samples, J. Appl. Pol. Sci. 82, 2790 (2001).

    Article  CAS  Google Scholar 

  109. H. Geisler, M. Hoehn, M. Rambach, M. Meyer, E. Zschech, M.M.A. Romanov, M. Bobeth, W. Pompe, and R. Geer, Elastic mapping of sub-surface defects by ultrasonic force microscopy: limits of depth sensitivity, Proc. of Conf. on Micr. Semicond. Mat. 2001 169, 527 (2001).

    CAS  Google Scholar 

  110. D. Hurley, M. Kopycinska-Muller, A. Kos, and R. Geiss, Quantitative elastic property measurements at the nanoscale with atomic force acoustic microscopy, Adv. Eng. Mat. 7, 713 (2005).

    Article  CAS  Google Scholar 

  111. S. Amelio, A. Goldade, U. Rabe, V. Scherer, B. Bhushan, and W. Arnold, Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392, 75 (2001).

    Article  CAS  Google Scholar 

  112. P. Avouris, J. Appenzeller, R. Martel, and S.J. Wind, Carbon nanotube electronics, Proc. IEEE 91, 1772 (2003).

    Article  CAS  Google Scholar 

  113. J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fischer, Thermal properties of carbon nanotubes and nanotube-based materials, Appl. Phys. A 74, 339 (2002).

    Article  ADS  CAS  Google Scholar 

  114. E.T. Thostenson, Z. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol. 61, 1899 (2001).

    Article  CAS  Google Scholar 

  115. L. Roschier, R. Tarkiainen, M. Ahlskog, M. Paalanen, and P. Hakonen, Manufacture of single electron transistors using AFM manipulation on multiwalled carbon nanotubes, Microelectron. Eng. 61–62, 687 (2002).

    Article  Google Scholar 

  116. J.P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79, 1297 (1997).

    Article  ADS  CAS  Google Scholar 

  117. V.N. Popov and V.E.V. Doren, Elastic properties of single-walled carbon nanotubes, Phys. Rev. B 61, 3078 (2000).

    Article  ADS  CAS  Google Scholar 

  118. Y. Xia, M.W. Zhao, Y.C. Ma, M.J. Ying, X.D. Liu, P.J. Liu, and L.M. Mei, Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure, Phys. Rev. B 65, 155415 (2002).

    Article  CAS  Google Scholar 

  119. J.A. Elliot, J.K.W. Sandler, A.H. Windle, R.J. Young, and M.S.P. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent, Phys. Rev. Lett. 92, 095501 (2004).

    Article  ADS  CAS  Google Scholar 

  120. M.H. Park, J.W. Jang, C.E. Lee, and C.J. Lee, Interwall support in double-walled carbon nanotubes studied by scanning tunneling microscopy, Appl. Phys. Lett. 86, 023110 (2005).

    Article  CAS  Google Scholar 

  121. T. Hertel, R.E. Walkup, and P. Avouris, Deformation of carbon nanotubes by surface can der Waals forces, Phys. Rev. B 58, 13870 (1998).

    Article  ADS  CAS  Google Scholar 

  122. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, and P.L. McEuen, Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 90, 156401(2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  123. S. Dag, O. Gulseren, S. Ciraci, and T. Yildirim, Electronic structure of the contact between carbon nanotube and metal electrodes, Appl. Phys. Lett. 83,3180 (2003).

    Article  ADS  CAS  Google Scholar 

  124. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, and R.E. Walkup, Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141, 201 (1999).

    Article  CAS  Google Scholar 

  125. V. Lordi and N. Yao, Radial compression and controlled cutting of carbon nanotubes, J. Chem. Phys. 109, 2509 (1998).

    Article  ADS  CAS  Google Scholar 

  126. L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B 69, 045414 (2004).

    Article  ADS  CAS  Google Scholar 

  127. I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen,, and E. Riedo, Radial Elasticity of Multiwalled Carbon Nanotubes, Phys. Rev. Lett. 94, 175502 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  128. B.T. Kelly, Physics of Graphite (PUBLISHER, ADDRESS, 1981).

    Google Scholar 

  129. Z.L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-From materials to nanodevices, Adv. Mater. 15, 432 (2003).

    Article  Google Scholar 

  130. M. Buongiorno-Nardelli, J.-L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, and J. Bernholc, Mechanical properties, defects and electronic behavior of carbon naotubes, Carbon 38, 1703 (2000).

    Article  CAS  Google Scholar 

  131. G. Zhang, M. Long, Z.-Z. Wu, and W.-Q. Yu, Mechanical properties of hepatocellular carcinoma cells, World Journal of Gastroenterology 8, 243 (2002).

    PubMed  Google Scholar 

  132. H.F. Bettinger, T. Dumitrica, G.E. Scuseria, and B.I. Yakobson, Mechanically induced defects and stregth of BN nanotubes, Phys. Rev. B 65, 041406 (2002).

    Article  ADS  CAS  Google Scholar 

  133. J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A 69, 255 (1999).

    Article  ADS  CAS  Google Scholar 

  134. J.P. Salvetat, A.J. Kulik, J.M. Bonard, and et al., Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes., Adv. Mater. 11, 161 (1999).

    Article  CAS  Google Scholar 

  135. L. Shen and J. Li, Transversely isotropic elastic properties of multiwalled carbon nanotubes, Phys. Rev. B 71, 035412 (2005).

    Article  ADS  CAS  Google Scholar 

  136. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater. 15, 464 (2003).

    Article  CAS  Google Scholar 

  137. P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, and Z.L. Wang, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science 309, 1007 (2005).

    Article  CAS  Google Scholar 

  138. S.X. Mao, M. Zhao, and Z.L. Wang, Nanoscale mechanical behavior of individual semiconducting nanobelts, Appl. Phys. Lett. 83, 993 (2003).

    Article  ADS  CAS  Google Scholar 

  139. M.H. Zhao, Z.-L. Wang, and S.X. Mao, Piezoelectric Characterization of Individual Zinc Oxide Nanobel Probed by Peizoresponse Force Microscope, Nanoletters 4, 587 (2004).

    CAS  Google Scholar 

  140. E. Evans, A. Leung, and D. Zhelev, Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens, J.Cell. Biol 122, 12951300(1993).

    Article  Google Scholar 

  141. T. Oliver, J. Lee, and K. Jacobson, ?, Semin. Cell Biol 5, 139 (1993).

    Article  Google Scholar 

  142. M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A.Z. Hrynkiewicz, Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, Eur. Biophys J 28, 312 (1999).

    Article  PubMed  CAS  Google Scholar 

  143. W.H. Goldmann and R.M. Ezzell, Viscoelasticity in wild-type and vinculindeficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology, Experimental Cell Research 226, 234 (1996).

    Article  PubMed  CAS  Google Scholar 

  144. W.H. Goldmann, R. Galneder, M. Ludwig, W. Xu, E.D. Adamson, N. Wang, and R.M. Ezzell, Differences in elasticity of vinculin-deficient F( cells measured by magnetometry and atomic force microscopy, Experimental Cell Research 239, 235 (1998).

    Article  PubMed  CAS  Google Scholar 

  145. W.H. Goldmann, R. Galneder, M. Ludwig, A. Kromm, and R.M. Ezzell, Differences in F9 and 5.51 cell elasticity determined by cell poking and atomic force microscopy, FEBS Letters 424, 139 (1998).

    Article  PubMed  CAS  Google Scholar 

  146. H.G. Hansma, Surface Biology of DNA by Atomic Force Microscopy, Annu. Rev. Phys. Chem 52, 71 (2001).

    Article  PubMed  CAS  Google Scholar 

  147. J.L. Alonso, and W.H. Goldmann, Feeling the forces: atomic force microscopy in cell biology, Life Sciences 72, 2553 (2003).

    Article  PubMed  CAS  Google Scholar 

  148. A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, and R.M. Simmons, Single-Molecule Biomechanics with Optical Methods, Science 283, 1689 (1999).

    Article  PubMed  ADS  CAS  Google Scholar 

  149. E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E.D. Fabrizio, Biological samples micro-manipulation by means of optical tweezers, Microelectronic Engineering 78–79, 575 (2005).

    Article  CAS  Google Scholar 

  150. F. Lopez, A. Lundkvist, M. Balooch, D. Haupt, J. Kinney, S. Oesterle, P. Fitzgerald, and P. Yock, Plaque extrusion during balloon angioplasty: New evidence from x-ray microtomography, JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY 29, 7491 (1997).

    Google Scholar 

  151. S. Habelitz, S.J. Marshall, G.W. Marshall, and M. Balooch, Mechanical properties of human dental enamel on the nanometre scale, ARCHIVESOFORAL BIOLOGY 46, 173 (2001).

    CAS  Google Scholar 

  152. S. Habelitz, G.W. Marshall, M. Balooch, and S.J. Marshall, Nanoindentation and storage of teeth, JOURNAL OF BIOMECHANICS 35, 995 (2002).

    Article  PubMed  Google Scholar 

  153. J. Kinney, M. Balooch, S. Marshall, G.W. Marshall, and T. Weihs, Hardness and Young’s modulus of human peritubular and intertubular dentine, ARCHIVES OF ORAL BIOLOGY 41, 9 (1996).

    Article  PubMed  CAS  Google Scholar 

  154. T.T. Perkins, D.E. Smith, R.G. Larson, and S. Chu, Stretching of a single tethered polymer in a uniform-flow, Science 268, 83 (1995).

    Article  PubMed  ADS  CAS  Google Scholar 

  155. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viory, D. Chatenay, and F. Caron, DNA: An Extensible Molecule, Science 271, 792 (1996).

    Article  PubMed  ADS  CAS  Google Scholar 

  156. S.B. Smith, Y. Cui, and C. Bustamante, Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules, Science 271, 795 (1996).

    Article  PubMed  ADS  CAS  Google Scholar 

  157. R.M. Simmons, J.T. Finer, S. Chu, and J. Spudich, Quantitative measurements of force and displacement using an optical trap, Biophys. J. 70, 1813 (1996).

    Article  PubMed  CAS  Google Scholar 

  158. M.D. Wang, H. Yin, R. Landick, J. Gelles, and S.M. Block, Stretching DNA with optical tweezers, Biophys. J. 72, 1335 (1997).

    Article  PubMed  CAS  Google Scholar 

  159. S.B. Smith, Y. Cui, A.C. Hausrath, and C. Bustamante, ?, Biophys. J. 68,A250 (1995).

    Google Scholar 

  160. P. Cizeau and J.-L. Viovy, Modeling extreme extension of DNA, Biopolymers 42, 383 (1997).

    Article  CAS  Google Scholar 

  161. A. Ahsan, J. Rudnick, and R. Bruinsma, Elasticity theory of the B-DNA to S-DNA transition, Biophys. J. 74, 132 (1998).

    Article  PubMed  CAS  Google Scholar 

  162. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H.E. Gaub, How strong is a covalent bond?, Science 283, 1727 (1999).

    Article  PubMed  ADS  CAS  Google Scholar 

  163. D. Bensimon, A.J. Simon, V. Croquette, and A. Bensimon, Stretching DNA with a receding meniscus-experiments and models, Phys. Rev. Lett. 74, 4754(1995).

    Article  PubMed  ADS  CAS  Google Scholar 

  164. O. Kratky and G. Porod, X-ray investigation of dissolved chain molecules, Rec.Trav.Chim.Pays.Bas 68, 1106 (1949).

    Article  CAS  Google Scholar 

  165. C. Bustamante, Z. Bryant, and S.B. Smith, Ten years of tension: single-molecule DNA mechanics, Nature 421, 423 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  166. J. Zlatanova and S.H. Leuba, Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level, Biochem. Cell Biol 81, 151 (2003).

    Article  PubMed  CAS  Google Scholar 

  167. G. Lee, L. Chrisey, and R. Colton, Direct measurement of the forces between complementary strands of DNA, Science 266, 771 (1994).

    Article  PubMed  ADS  CAS  Google Scholar 

  168. T. Strunz, K. Oroszlan, R. Schafer, and H.J. Guntherodt, Dynamic force spectroscopy of single DNA molecules, Proc. Natl. Acad. Sci. USA 96, 11277 (1999).

    Article  PubMed  ADS  CAS  Google Scholar 

  169. H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H.E. Gaub, Mechanical stability of single DNA molecules, Biophys. J. 78, 1997 (2000).

    Article  PubMed  CAS  Google Scholar 

  170. M. Rief, H. Clausen-Schaumann, and H.E. Gaub, Sequence-dependent mechanics of single DNA molecules, Nat. Struct. Biol. 6, 346 (1999).

    Article  PubMed  CAS  Google Scholar 

  171. N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, Nanoscale vibrational analysis of single-walled carbon nanotubes, J. Am. Chem. Soc. 127, 2533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merchan, L., Szoszkiewicz, R., Riedo, E. (2007). NanoMechanics: Elasticity in Nano-Objects. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36807-6_12

Download citation

Publish with us

Policies and ethics