Advertisement

SSP 2004 pp 73-85 | Cite as

Thermal Induced Processes in Laminar System of Stainless Steel — Beryllium

  • A. K. Zhubaev
  • K. K. Kadyrzhanov
  • V. S. Rusakov
  • T. E. Turkebaev
Conference paper

Abstract

The paper reports on investigation of the laminar system’ stainless steel 12Cr18Ni10Ti — Be’ at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γα transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γα- and reverse αγ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

Key words

stainless steel plastic deformation thermal annealing beryllides beryllization phase transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kogan, B.I., Kapustinskaya, K.A., Topunova, G.A.: Beryllium. Nauka, Moscow (1975)Google Scholar
  2. 2.
    Knapton, A.G., West, K.B.C.: J. Nucl. Mater. 3, 239 (1961)CrossRefADSGoogle Scholar
  3. 3.
    Vickers, W.: In: The Metallurgy of Beryllium. Chapman & Hall, London (1963)Google Scholar
  4. 4.
    Hedge, E.S., et al.: In: Beryllium Technology, vol. 2. New York (1966)Google Scholar
  5. 5.
    Zemskov, G.V., Melynik, P.I.: Metallovedenie i termicheskaya obrabotka metallov 3, 62 (1966) (in Russian)Google Scholar
  6. 6.
    Zbozhnaya, O.M., Borisov, E.V.: Fiziko-himicheskaya mekhanika materialov 10, 64 (1974) (in Russian)Google Scholar
  7. 7.
    Altovsky, R.M., Vasina, E.A.: Atomnaya energia 38, 333 (1975) (in Russian)Google Scholar
  8. 8.
    Altovsky, R.M., Panov, A.S.: Corrosion and Compatibility of Beryllium. Atomizdat, Moscow (1975) (in Russian)Google Scholar
  9. 9.
    Papirov, I.I.: Structure and Characteristics of Beryllium Alloys. Energoizdat, Moscow (1981) (in Russian)Google Scholar
  10. 10.
    Papirov, I.I.: Beryllium in Alloys. Energoatomizdat, Moscow (1986) (in Russian)Google Scholar
  11. 11.
    Rusakov, V.S.: Mossbauer Spectroscopy of Locally Non-Homogeneous Systems. Almaty (2000) (in Russian)Google Scholar
  12. 12.
    Nikolayev, V.I., Rusakov, V.S.: Mossbauer Studies of Ferrites. Moscow (1985) (in Russian)Google Scholar
  13. 13.
    Rusakov, V.S.: Izvestia AN. Seria fizicheskaya 63, 1389 (1999) (in Russian)Google Scholar
  14. 14.
    Zemcik, T., Jakesova, M., Suwalski, J.: In: Proc. Intern. Conf. Appl. Mossbauer Effect, P.513. Jaipur, India (1982)Google Scholar
  15. 15.
    Ohta, K.: J. Appl. Phys. 39, 2123 (1968)CrossRefADSGoogle Scholar
  16. 16.
    Mints, R.I., Semyonkin, V.A.: Ukrainskii fizicheskii zhurnal 20, 596 (1975) (in Russian)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • A. K. Zhubaev
  • K. K. Kadyrzhanov
    • 1
  • V. S. Rusakov
    • 2
  • T. E. Turkebaev
    • 1
  1. 1.Institute of Nuclear PhysicsNational Nuclear CenterAlmaty, Kazakhstan
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations