Advertisement

SSP 2004 pp 27-33 | Cite as

La-Zn Substituted Hexaferrites Prepared by Chemical Method

  • A. Grusková
  • J. Lipka
  • M. Papánová
  • J. Sláma
  • I. Tóth
  • D. Kevická
  • G. Mendoza
  • J. C. Corral
  • J. Šubrt
Conference paper

Abstract

La-Zn substituted M-type Ba hexaferrite powders were prepared by sol-gel (Mx) and organometallic precursor (Sk) methods with Fe/Ba ratio of 11.6 and 10.8, respectively. The compositions (LaZn)xBa1−x Fe12−x O19 with 0.0 ≤ x ≤ 0.6 were annealed at 975°C/2 h. The cationic site preferences of nonmagnetic La3+ instead of Ba2+ ions and Zn2+ instead of Fe3+ ions were determined by Mössbauer spectroscopy. The La3+ ions substitute the large Ba2+ ions at 2a site and for x ≥ 0.4 also at 4f2 site. The nearly all Zn2+ ions are placed at the 4f1 sites. The thermomagnetic analysis of χ(ϑ) confirms that only the small substitutions for x ≤ 0.4 can be taken as a single-phase hexaferrites. The coercivity H c almost does not change at x = 0.2 for (Mx) samples and further decrease up to x = 0.6. For (Sk) samples at substitution x = 0.2 the values of H c are decreasing and at higher x the values nearly do not change. The Curie points, T c, slowly decrease with x for both (Mx) and (Sk) samples.

Key words

ferrites-hexagonal magnetic recording Mössbauer effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rane, M.V., et al.: J. Magn. Magn. Mater. 195, L256 (1999)CrossRefADSGoogle Scholar
  2. 2.
    Rane, M.V., et al.: J. Magn. Magn. Mater. 192, 288 (1999)CrossRefADSGoogle Scholar
  3. 3.
    Corral, J.C., et al.: J. Magn. Magn. Mater. 242–245, 430 (2002)Google Scholar
  4. 4.
    Zhong, W., et al.: J. Magn. Magn. Mater. 168, 196 (1997)CrossRefADSGoogle Scholar
  5. 5.
    Grusková, A., et al.: J. Magn. Magn. Mater. 242–245, 423 (2002)CrossRefGoogle Scholar
  6. 6.
    Mendoza-Suárez, G., et al.: Mater. Chem. Phys. 9454, 1 (2002)Google Scholar
  7. 7.
    Lipka, J., et al.: J. Magn. Magn. Mater. 140–144, 2209 (1995)CrossRefGoogle Scholar
  8. 8.
    Liu, X., et al.: J. Magn. Magn. Mater. 238, 207 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Liu, X., et al.: J. Appl. Phys. 87(5), 2503 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Dosoudil, R.: J. Electr. Eng. 53(10/S), 135 (2002)Google Scholar
  11. 11.
    Jančárik, V., et al.: J. Electr. Eng. 50(8/S), 63 (1999)Google Scholar
  12. 12.
    Zhou, J.X., et al.: IEEE Trans. Magn. 27(6), 4654 (1991)CrossRefADSGoogle Scholar
  13. 13.
    Sauer, Ch., et al.: J. Phys. Chem. Solids 39, 1197 (1978)CrossRefADSGoogle Scholar
  14. 14.
    Turilli, G., et al.: IEEE Trans. Magn. 24, 2865 (1988)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • A. Grusková
    • 1
  • J. Lipka
    • 1
  • M. Papánová
    • 1
  • J. Sláma
    • 1
  • I. Tóth
    • 1
  • D. Kevická
    • 1
  • G. Mendoza
    • 2
  • J. C. Corral
    • 2
  • J. Šubrt
    • 3
  1. 1.Slovak University of TechnologyBratislavaSlovakia
  2. 2.Cinvestav-SaltilloSaltillo, CoahMexico
  3. 3.Institute of Inorganic ChemistryAS CRŘežCzech Republic

Personalised recommendations