Advertisement

SSP 2004 pp 105-109 | Cite as

Magnetic Phase Transitions in Nanoclusters and Nanostructures

  • I. P. Suzdalev
  • Yu. V. Maksimov
Conference paper

Abstract

New phenomena — the first order magnetic phase transitions were observed in nanoclusters and nanostructures. For isolated ferrihydrite nanoclusters (d ∼ 1–2 nm) in porous materials, for α-,γ-Fe2O3 nanoclusters (d∼ 20–50 nm) and for composites of nanostructured metallic Eu with additives of α-,γ-Fe2O3 nanoclusters and adamantane the critical temperatures (T C, T N) and magnetic cluster critical sizes (R cr) were determined by means of thermodynamic models and Mössbauer spectroscopy. The first order magnetic phase transitions (jump-like) proceed by such a way when magnetization and magnetic order disappear by jump without superparamagnetic relaxation. According to thermodynamic model predictions the cluster and interface defects were suggested to play the main role in magnetic behavior. Thus, for the defective α-, γ-Fe2O3 nanoclusters, at RR cr, the presence of the first order (jump-like) magnetic phase transition was described in terms of magnetic critical size of cluster. The action of high pressure (up to 2 GPa) with shear (120–240°) was effective for defect generation and nanostructure formation. For nanosystems including iron oxide nanoclusters, adamantane and metallic europium and subjected to shear stress under high pressure loading the critical value of defect density was estimated by the study of the character of magnetic phase transition. First-to-second-order (nanostructured metallic Eu) and second-to-first-order (α-, γ-ferric oxide nanoclusters) changes of the character of magnetic phase transition were shown to accompany by the variation of critical temperatures compared to the corresponding bulk values.

Key words

α-, γ-ferric oxide nanoclusters nanostructured metallic Eu magnetic phase transitions defects thermodynamics Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suzdalev, I.P., Buravtsev, V.N., Imshennik, V.K., Maksimov, Yu.V., Matveev, V.V., Volynskaya, A.V., Trautwein, A.X., Winkler, H.: Z. Phys. D 37, 55 (1996)CrossRefGoogle Scholar
  2. 2.
    Suzdalev, I.P., Buravtsev, V.N., Imshennik, V.K., Maksimov, Yu.V.: Scr. Mater. 44, 1937 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • I. P. Suzdalev
    • 1
  • Yu. V. Maksimov
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia

Personalised recommendations