SSP 2004 pp 3-15 | Cite as

The Electronic and Magnetic Properties of FCC Iron Clusters in FCC 4D Metals

  • M. E. Elzain
  • A. A. Yousif
  • A. D. Al Rawas
  • A. M. Gismelseed
  • H. Widatallah
  • K. Bouziani
  • I. Al-Omari
Conference paper


The electronic and magnetic structures of small FCC iron clusters in FCC Rh, Pd and Ag were calculated using the discrete variational method as a function of cluster size and lattice relaxation. It was found that unrelaxed iron clusters, remain ferromagnetic as the cluster sizes increase, while for relaxed clusters antiferromagnetism develops as the size increases depending on the host metal. For iron in Rh the magnetic structure changes from ferromagnetic to antiferromagnetic for clusters as small as 13 Fe atoms, whereas for Fe in Ag antiferromagnetism is exhibited for clusters of 24 Fe atoms. On the hand, for Fe in Pd the transition from ferromagnetism to antiferromagnetism occurs for clusters as large as 42 Fe atoms. The difference in the magnetic trends of these Fe clusters is related to the electronic properties of the underlying metallic matrix. The local d densities of states, the magnetic moments and hyperfine parameters are calculated in the ferromagnetic and the antiferromagnetic regions. In addition, the average local moment in iron-palladium alloys is calculated and compared to experimental results.

Key words

magnetic moment hyperfine fine field isomer shift density of states impurity cluster 4d host iron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kubler, J.: J. Phys., Condens. Matter 15, V21 (2003)CrossRefGoogle Scholar
  2. 2.
    Abraham, S.C., Guttman, L., Kasper, J.S.: Phys. Rev. 127, 2052 (1962)CrossRefADSGoogle Scholar
  3. 3.
    Tsunoda, Y.: J. Phys., Condens. Matter 1, 10427 (1989); Tsunoda, Y., Nishioka, Y., Nicklow, M., J. Magn. Magn. Mater. 128, 133 (1993)CrossRefADSGoogle Scholar
  4. 4.
    Herper, H.C., Hoffmann, E., Entel, P.: Phys. Rev. B 60, 3839 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Knoplfe, K., Sanratskii, L.M., Kubler, J.: Phys. Rev. B 62, 5564 (2001)ADSGoogle Scholar
  6. 6.
    Spisak, D., Hafner, J.: J. Magn. Magn. Mater. 272–276, 1184 (2004)CrossRefGoogle Scholar
  7. 7.
    Nogueira, R., Petrilli, H.: Phys. Rev. B 60, 4120 (1999)CrossRefADSGoogle Scholar
  8. 8.
    Li, Z., Hashi, Y., Kawazoe, Y.: J. Magn. Magn. Mater. 167, 123 (1997)CrossRefADSGoogle Scholar
  9. 9.
    Ellis, D.E., Guo, J., Lam, D.J.: Rev. Solid State Sci. 5, 287 (1991)Google Scholar
  10. 10.
    Martin, J.I., Nogues, J., Liu, K., Vicent, J.L., Schuller, I.K.: J. Magn. Magn. Mater. 256, 449 (2003); Fassbender, J., Ravelosona, D., Samson, Y.: J. Phys., D. Appl. Phys. 37, R179 (2004)CrossRefADSGoogle Scholar
  11. 11.
    Parfenova, V.P., Delyagin, N.N., Erzinkyan, A.L., Reyman, S.I.: Phys. Status Solidi, B 214, R1 (1999); Parfenova, V.P., Erzinkyan, A.L., Delyagin, N.N., Reyman, S.I.: Phys. Status Solidi, B 228, 731 (2001)CrossRefADSGoogle Scholar
  12. 12.
    Gubanov, V.A., Liechtenstein, A.I., Postnikov, A.V.: Magnetism and Electronic Structure of Crystals, Springer Series in Solid-State Sciences 98, p. 125. Springer, Berlin Heidelberg New York (1992)Google Scholar
  13. 13.
    Ma, E., He, J.-H., Schilling, P.J.: Phys. Rev. B 55, 5542 (1997); Morales, M.A., Passamani, E.C., Baggio-Saitovitch, E.: Phys. Rev. B 66, 144422 (2002)CrossRefADSGoogle Scholar
  14. 14.
    Manns, V., Scholz, B., Keune, W., Schletz, K.P., Braun, M., Wassermann, E.F.: J. Physique, Colloque C8(suppl. 12) 1149 (1988)Google Scholar
  15. 15.
    Moon, H., Kim, W., Oh, S., Park, J., Park, J.G., Cho, E., Lee, J., Ri, H.: J. Korean Phys. Soc. 36, 49 (2000); Shi, Y., Qian, D., Dong, G., Wang, D.: Phys. Rev., B 65, 172410 (2002)Google Scholar
  16. 16.
    Hoshino, T., Shimizu, A., Zeller, R., Dederichs, P.H.: Phys. Rev. B 53, 5247 (1996)CrossRefADSGoogle Scholar
  17. 17.
    Elzain, M.E., Al Rawas, A.D., Yousif, A.A., Gismelseed, A.M., Rais, A., Al Omari, I., Widatallah, H.: Phys. Status Solidi, C 1, 1796 (2004)CrossRefADSGoogle Scholar
  18. 18.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Tech. Universitat Wien, Austria), 2001. ISBN 3-9501031-1-2Google Scholar
  19. 19.
    Cottenier, S.: Density Functional Theory and the family of (L)APW-methods; a step-by-step introduction (Institute voor Kern-en Stralingsfysica, K. U. Leuven, Belgium), 2002, ISBN 90-807215-1-4 (to be found at Scholar
  20. 20.
    Averil, F.W., Ellis, D.E.: J. Chem. Phys. 59, 6412 (1973)CrossRefADSGoogle Scholar
  21. 21.
    Elzain, M.E., Ellis, D.E., Guenzberger, D.: Phys. Rev. B 34, 1430 (1986)CrossRefADSGoogle Scholar
  22. 22.
    Battocletti, M., Ebert, H.: Phys. Rev. B 53, 9776 (1996)CrossRefADSGoogle Scholar
  23. 23.
    Clogston, A.M., Matthias, B.T., Peter, M., Williams, H.J., Corenzwit, E., Sherwood, R.C.: Phys. Rev. 125, 541 (1962)CrossRefADSGoogle Scholar
  24. 24.
    Moruzzi, V.I., Marcus, P.M.: Phys. Rev. B 39, 471 (1989)CrossRefADSGoogle Scholar
  25. 25.
    Cable, J.W., Wollan, E.O., Koehler, W.C.: Phys. Rev. 138, A755 (1965)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • M. E. Elzain
    • 1
  • A. A. Yousif
    • 1
  • A. D. Al Rawas
    • 1
  • A. M. Gismelseed
    • 1
  • H. Widatallah
    • 1
  • K. Bouziani
    • 1
  • I. Al-Omari
    • 1
  1. 1.Department of Physics, College of ScienceSultan Qaboos UniversityAl Khod

Personalised recommendations