Skip to main content

153Sm-EDTM for Bone Pain Treatment in Skeletal Metastases

  • Chapter
Breast Cancer

Abstract

Metastases to the skeleton occur in approximately 75% of patients with advanced breast carcinoma, and skeletal metastases are present in >90 % of patients who die from breast carcinoma (Coleman and Rubens 1987; Hortobagyi 1991). Bone disease is most often lytic or mixed lytic/blastic, determining a series of disease-related events that have the most significant impact on quality of life in these relatively long-surviving patients (Kakonen and Mundy 2003). The symptomatic treatment of skeletal pain due to metastases from breast cancer is a complex task that may require administration of drugs, including bisphosphonates and analgesics, and external beam radiotherapy (Lipton 2000; Hoskin 2003). Bisphosphonates target osteoclast-mediated bone resorption and reduce the skeletal complication rate arising from osteolytic metastases in breast cancer (Coleman 2000). External beam radiotherapy allows an effective pain control with a relatively low dose and a low toxicity if the metastatic disease is not extensive, but the toxicity rapidly increases with wide irradiation fields (Hoskin 1995). Systemic radioisotope therapy with radionuclides linked to a bone seeker agent may be the option of choice for the radiation treatment of patients with multiple skeletal localizations due to its efficacy, low cost and low toxicity (Dearnaley et al. 1992). Nonetheless, it still appears to have a low priority among medical oncologists and remain underutilized. Physician education regarding radioisotope therapy should be improved, and clinical trials to evaluate newer treatment paradigms including radionuclides should be strongly encouraged (Damerla et al. 2005).

Radionuclides suitable for systemic metabolic radiotherapy of bone pain, and commercially available, include 89Sr, 186Re chelated by HEDP and 153Sm chelated by EDTMP (Serafini 1994; McEwan 1997; Serafini 2001). The main physical characteristic of the three radionuclides are illustrated in Table 21.1. Beta emitters with short half-lives, such as 186Re and 153Sm, deliver their radiation dose at higher dose rates, which may be more therapeutically effective than equivalent doses given at lower dose rates. The short range of 153Sm beta emission, actually the shortest of the three available radionuclides, may be of advantage limiting red marrow irradiation (Serafini 2000, 2001). 153Sm-EDTMP was developed by Goeckeler at the University of Missouri as a 1:1 chelation complex of radioactive 153Sm and a tetraphosphonate, (ethylenediamine-tetramethylene phosphonate), also known as lexidronam (Goeckeler et al. 1987).

153Sm-EDTMP shows high selective skeletal uptake like conventional 99mTc bone scanning agents: its bone localization is by chemiabsorption of the tetraphosphate by hydroxyapatite and by the formation of samarium oxide involving oxygen of the hydroxyapatite. The therapeutic effect is due to the irradiation by the short range beta emission of 153Sm. Early phase I/II studies were published over 10 years ago (Turner et al. 1989; Podoloff et al. 1991; Eary et al. 1993; Turner and Claringbold 1991), and since then this agent has been clinically used for pain palliation in symptomatic bone metastases from several cancers, mainly prostate and breast carcinoma.

This review will address the characteristics of 153Sm-EDTMP as a radiopharmaceutical and its clinical applications for bone pain palliation in breast carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahonen A, Joensuu H, Hiltunen J et al (1994) Samarium-153-EDTMP in bone metastases. J Nucl Biol Med 38(suppl I):123–127

    PubMed  CAS  Google Scholar 

  • Alberts AS, Smit BJ, Louw WKA et al (1997) Dose response relationship and multiple dose efficacy and toxicity of samarium-153-EDTMP in metastatic cancer to bone. Radiother Oncol 43:175–179

    Article  PubMed  CAS  Google Scholar 

  • Bayouth JE, Macey DJ, Kasi LP et al (1994) Dosimetry and toxicity of samarium-153-EDTMP administered for bone pain due to skeletal metastases. J Nucl Med 35:63–69

    PubMed  CAS  Google Scholar 

  • Coleman RE (2000) Optimizing treatment of bone metastases by Aredia and Zometa. Breast Cancer 7:361–369

    Article  PubMed  CAS  Google Scholar 

  • Coleman RE, Rubens RD (1987) The clinical course of bone metastases from breast cancer. Br J Cancer 55:61–66

    PubMed  CAS  Google Scholar 

  • Collins C, Eary JF, Donaldson G et al (1993) Samarium-153-EDTMP in bone metastases of hormone refractory prostate carcinoma: a phase I/II trial. J Nucl Med 34:1839–1844

    PubMed  CAS  Google Scholar 

  • Damerla V, Packianathan S, Boerner PS et al (2005) Recent developments in nuclear medicine in the management of bone metastases: a review and perspective. Am J Clin Oncol 28: 513–520

    Article  PubMed  CAS  Google Scholar 

  • Dearnaley DP, Bayly RJ, A’Hern RP et al (1992) Palliation of bone metastases in prostate cancer. Hemibody irradiation or strontium-89? Clin Oncol 4:101–107

    Article  CAS  Google Scholar 

  • Dolezal J, Vizd’a J, Cermakova E (2003) Myelotoxicity after systemic radionuclide therapy of painful bone metastases with 153Samarium-EDTMP. Vnitr Lek 49:189–193

    PubMed  CAS  Google Scholar 

  • Donaldson G (1992) A new approach to calculating pain measurements for cancer patients. Sci Comput Automation 1:45–48

    Google Scholar 

  • Eary JF, Collins C, Stabin M et al (1993) Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med 34:1031–1036

    PubMed  CAS  Google Scholar 

  • Farhanghi M, Homes RA, Volkert WA et al (1992) Samarium-153-EDTMP: pharmacokinetic, toxicity and pain response using an escalating dose schedule in treatment of metastatic bone cancer. J Nucl Med 33:1451–1458

    PubMed  CAS  Google Scholar 

  • Goeckeler WF, Edwards B, Volkert WA et al (1987) Skeletal localization of samarium-153 chelates: potential therapeutic bone agents. J Nucl Med 28:495–504

    PubMed  Google Scholar 

  • Heggie JC (1991) Radiation absorbed dose calculations for samarium-153-EDTMP localized in bone. J Nucl Med 32:840–844

    PubMed  CAS  Google Scholar 

  • Holmes RA (1993) Radiopharmaceuticals in clinical trials. Semin Oncol 20(suppl 2):22–26

    PubMed  CAS  Google Scholar 

  • Hortobagyi GN (1991) Bone metastases in breast cancer patients. Semin Oncol 18:11–15

    PubMed  CAS  Google Scholar 

  • Hoskin PJ (1995) Radiotherapy for bone pain. Pain 63:137–139

    Article  PubMed  CAS  Google Scholar 

  • Hoskin PJ (2003) Bisphosphonates and radiation therapy for palliation of metastatic bone disease. Cancer Treat Rev 29:321–327

    Article  PubMed  CAS  Google Scholar 

  • Kakonen SM, Mundy GR (2003) Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 97(suppl):834–839

    Article  PubMed  Google Scholar 

  • Li L, Liang Z, Deng H et al (2002) Samarium-153-EDTMP bone uptake rate and its relation to therapeutic effect. Chin Med J 115:1096–1098

    PubMed  CAS  Google Scholar 

  • Lipton A (2000) Bisphosphonates and breast carcinoma: present and future. Cancer 88(suppl):3033–3037

    Article  PubMed  CAS  Google Scholar 

  • Logan KW, Volkert WA, Holmes RA (1987) Radiation dose calculations in persons receiving injection of samarium-153-EDTMP. J Nucl Med 28:505–509

    PubMed  CAS  Google Scholar 

  • Maini CL, Sciuto R, Romano L et al (2003) Radionuclide therapy with bone seeking radionuclides in palliation of painful bone metastases. J Exp Clin Cancer Res 22:71–74

    PubMed  CAS  Google Scholar 

  • Mauch PM (1993) Treatment of metastatic cancer to bone. In: De Vita VT Jr, Hellman S, Rosenberg Sam (eds) Cancer. Principles and practice of oncology. JB Lippincott, Philadelphia, pp 1564–1579

    Google Scholar 

  • McCready VR, O’Sullivan JM (2002) Future directions for unsealed source radionuclide therapy for bone metastases. Eur J Nucl Med 29:1271–1275

    Article  CAS  Google Scholar 

  • McEwan AJ (1997) Unsealed source therapy of painful bone metastases: an update. Semin Nucl Med 27:165–182

    Article  PubMed  CAS  Google Scholar 

  • Podoloff DA, Kasi LP, Kim EE et al (1991) Evaluation of Sm-153-EDTMP as a bone imaging agent during a therapeutical trial. J Nucl Med 32:A918

    Google Scholar 

  • Resche I, Chatal JF, Pecking A et al (1997) A dose-controlled study of 153-Sm-ethylenediaminetetramethylenephosphonate (EDTMP) in the treatment of patients with painful bone metastases. Eur J Cancer 33:1583–1591

    Article  PubMed  CAS  Google Scholar 

  • Samaratunga RC, Thomas SR, Hinnefeld JD et al (1995) A Monte Carlo simulation model for radiation dose to metastatic skeletal tumor from Rhenium-186(Sn)-HEDP. J Nucl Med 36:336–350

    PubMed  CAS  Google Scholar 

  • Sciuto R, Maini CL, Tofani A et al (1996) Radiosensitization with low-dose carboplatin enhances pain palliation in radioisotope therapy with strontium-89. Nuc Med Commun 17:799–804

    Article  CAS  Google Scholar 

  • Sciuto R, Festa A, Tofani A et al (1998) Platinum compounds as radiosensitizers in strontium-89 metabolic radiotherapy. Clin Ther 149:43–47

    CAS  Google Scholar 

  • Sciuto R, Tofani A, Festa A et al (2000) Short-and long-term effects of 186 Re-1,1-hydroxyethylidene diphophonate in the treatment of painful bone metastases. J Nucl Med 41:647–654

    PubMed  CAS  Google Scholar 

  • Sciuto R, Festa A, Pasqualoni R et al (2001) Metastatic bone pain palliation with 89-Sr and 186-Re-HEDP in breast cancer patients. Breast Cancer Res Treat 66:101–109

    Article  PubMed  CAS  Google Scholar 

  • Sciuto R, Festa A, Rea S et al (2002) Effects of low-dose cisplatin on 89Sr therapy for painful bone metastases from prostate cancer: a randomized clinical trial. J Nucl Med 43:79–86

    PubMed  CAS  Google Scholar 

  • Serafini AN (1994) Current status of systemic intravenous radiopharmaceuticals for the treatment of painful metastatic bone disease. Int J Radiat Oncol Biol Phys 30:1187–1194

    PubMed  CAS  Google Scholar 

  • Serafini AN (2000) Samarium Sm-153 lexidronam for the palliation of bone pain associated with metastases. Cancer 88(suppl):2934–2939

    Article  PubMed  CAS  Google Scholar 

  • Serafini AN (2001a) Therapy of metastatic bone pain. J Nucl Med 42:895–906

    PubMed  CAS  Google Scholar 

  • Serafini AN (2001b) Systemic metabolic radiotherapy with samarium-153 EDTMP for the treatment of painful bone metastases. Q J Nucl Med 45:91–99

    PubMed  CAS  Google Scholar 

  • Serafini AN, Houston SJ, Resche I et al (1998) Palliation of pain associated with metastatic bone cancer using samarium-153 Lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol 16:1574–1581

    PubMed  CAS  Google Scholar 

  • Singh A, Holmes RA, Farhangi M et al (1989) Human pharmacokinetics of samarium-153 EDTMP in metastatic cancer. J Nucl Med 30:1814–1818

    PubMed  CAS  Google Scholar 

  • Tian JH, Zhang JM, Hou QT et al (1999) Multicentre trial on the efficacy and toxicity of single-dose samarium-153-ethylene diamine tetramethylene phosphonate as a palliative treatment for painful skeletal metastases in China. Eur J Nucl Med 26:2–7

    Article  PubMed  CAS  Google Scholar 

  • Turner JH, Claringbold PG (1991) A phase II study of treatment of painful multifocal skeletal metastases with single and repeated dose of samarium-153 ethylenediaminetetramethylene phosphonate. Eur J Cancer 27:1084–1086

    Article  PubMed  CAS  Google Scholar 

  • Turner JH, Claringbold PG, Hetherington EL et al (1989a) A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. J Clin Oncol 7:1926–1931

    PubMed  CAS  Google Scholar 

  • Turner JH, Martindale AA, Sorby P et al (1989b) Samarium-153 EDTMP therapy of disseminated skeletal metastasis. Eur J Nucl Med 15:784–795

    Article  PubMed  CAS  Google Scholar 

  • Turner JH, Claringbold PG, Martindale AA (1992) Samarium-153-EDTMP and radiosensitizing chemotherapy for treatment of disseminated skeletal metastases. Eur J Nucl Med 16:s125

    Google Scholar 

  • Wu H, Tan T, Fang L et al (2003) Evaluation of efficacy of 153Sm-EDTMP in patients with painful bone metastases of breast cancer. Sichuan Da Xue Xue Bao Yi Xue Ban 34:716–718

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maini, C.L., Bergomi, S., Pasqualoni, R., Strigari, L., Sciuto, R. (2008). 153Sm-EDTM for Bone Pain Treatment in Skeletal Metastases. In: Bombardieri, E., Gianni, L., Bonadonna, G. (eds) Breast Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36781-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36781-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36780-2

  • Online ISBN: 978-3-540-36781-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics