Skip to main content

FDG-PET in Monitoring Therapy of Breast Cancer

  • Chapter
Breast Cancer

Abstract

Fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) has been used successfully for the staging and re-staging of breast cancer. Another significant indication is the evaluation of therapy response. There are only few data on FDGPET in breast cancer after radiation therapy. The same holds true for chemotherapy. Only the therapy response in locally advanced breast cancer after chemotherapy has been investigated thoroughly. Histopathologic response could be predicted with an accuracy of 88-91% after the first and second course of therapy. A quantitative evaluation is of course a prerequisite when FDG-PET is used for therapy monitoring. Only few studies have focussed on hormone therapy. Here, a flare phenomenon with increasing SUVs after initiation of tamoxifen therapy has been observed. More prospective multicenter trials will be needed to make FDG-PET a powerful tool in monitoring chemotherapy in breast cancer.

Whole body imaging with fluorine-18 deoxyglucose PET (FDG-PET) has gained widespread acceptance for the staging and restaging of breast cancer (Biersack et at. 2001; Kostakoglu and Goldsmith 2003; Grahek et al. 2004). Another significant indication for FDG-PET is the evaluation of therapy response. Above that the proof of viability of tumour tissue after termination of chemotherapy is another indication for PET. The evaluation of therapy response is usually done by CT, sonography or MRI (Biersack and Palmedo 2003). These imaging procedures allow the detection of changes of the tumour size or volume. Because the majority of cells within a tumour mass are in a resting state, reduction of tumour volume requires time and might be masked by unspecific effects (edema as a result of necrosis). In contrast, cellular uptake of FDG is a function of cell viability and seems to be associated with the increased cell turnover. Animal models have shown that, after therapy, the amount of tumour FDG uptake reflects the number of viable tumour cells present (Haberkorn et al. 1987).

Already in 1989, Minn et al. (1989) studied patients with breast cancer before and after therapy using FDG-PET. Even using a planar gamma camera equipped with thick lead collimators, they could show that increasing FDG uptake over time was associated with tumour progression. These data make evident that new cumbersome sophisticated FDG imaging procedures may further increase the diagnostic significance of FDG-PET in therapy monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bassa P, Kim EE, Inoue T et al (1996) Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 37: 931–938.

    PubMed  CAS  Google Scholar 

  • Bender H, Bangard M, Metten N et al (1999) Possible role of FDG-PET in the early prediction of therapy outcome in liver metastases of colorectal cancer. Hybridoma 18:87–91

    PubMed  CAS  Google Scholar 

  • Biersack HJ, Palmedo H, Bender H, Krause T (2001) Nuclear medicine and breast cancer. In: Freeman LM (ed) Nuclear medicine annual 2001. Philadelphia, Lippincott Williams & Wilkens, pp 69–108

    Google Scholar 

  • Biersack HJ, Palmedo H (2003) Locally advanced breast cancer: Is PET useful for monitoring primary chemotherapy? J Nucl Med 44:1815–1817

    PubMed  Google Scholar 

  • Bockisch A, Freudenberg L, Antoch G, Müller S (2004) PET/CT: Clinical considerations. In: Oehr P, Biersack HJ, Coleman RE (eds) PET and PET-CT in oncology. Berlin Heidelberg New York, Springer, pp 101–125

    Google Scholar 

  • Booser DJ, Hortobagyi GN (1992) Treatment of locally advanced breast cancer. Semin Oncol 19:278–285

    PubMed  CAS  Google Scholar 

  • Chollet P, Charrier S, Brain E et al (1997) Clinical and pathological response to primary chemotherapy in operable breast cancer. Eur J Cancer 3:862–866

    Article  Google Scholar 

  • Dehdashti F, Flanagan FL, Mortimer JE et al (1999) Positron emission tomographic assessment of „metabolic flare“ to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26:51–56

    Article  PubMed  CAS  Google Scholar 

  • Eubank WB, Mankoff DA (2005) Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med 2:84–99

    Article  Google Scholar 

  • Fisher B, Brown A, Mamounas E et al (1997) Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: Findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol 15:2483–2493

    PubMed  CAS  Google Scholar 

  • Gennari A, Donati S, Salvadori B et al (2000) Role of 2-(18F)-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer 1:156–161

    PubMed  CAS  Google Scholar 

  • Grahek D, Montravers F, Kerrou K, Aide N, Lotz JP, Talbot JN (2004) (18F)FDG in recurrent breast cancer: Diagnostic perfomances, clinical impact and relevance of induced changes in management. Eur J Nucl Med Mol Imaging 31:179–188

    Article  PubMed  Google Scholar 

  • Haberkorn U, Reinhardt M, Strauss LG (1987) Metabolic design of combination therapy: Use of enhanced fluorodeoxyglucose uptake caused by chemotherapy. J Nucl Med 33:1981–1987

    Google Scholar 

  • Inoue T, Kim EE, Wallace S et al (1996) Positron emission tomography using (18F) fluoro-tamoxifen to evaluate therapeutic responses in patients with breast cancer: Preliminary study. Cancer Biother Radiopharm 11:235–245

    Article  PubMed  CAS  Google Scholar 

  • Kostakoglu L, Goldsmith SJ (2003) 18F-FDG-PET evaluation of the response to therapy for lymphoma and for breast, lung and colorectal carcinoma. J Nucl Med 44:224–239

    PubMed  Google Scholar 

  • Minn H, Soini I (1989) (18F)Fluorodeoxyglucose scintigraphy in diagnosis and follow-up of treatment in advanced breast cancer. Eur J Nucl Med Mol Imaging 15:61–66

    Article  CAS  Google Scholar 

  • Lowe VJ (2004) PET in radiotherapy. In: Oehr P, Biersack HJ, Coleman RE (eds) PET and PET-CT in oncology. Berlin Heidelberg New York, Springer, pp 303–308

    Google Scholar 

  • Jansson T, Westlin JE, Ahlstrom H et al (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 13:1470–1477

    PubMed  CAS  Google Scholar 

  • Jones DN, McCowage GW, Soestman HD et al (1996) Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG-PET. J Nucl Med 37:1438–1444

    PubMed  CAS  Google Scholar 

  • Jonson SD, Welch MJ (1998) PET imaging of breast cancer with fluorine-18 radiolabelled estrogens and progrestins. Q J Nucl Med 42:8–17

    PubMed  CAS  Google Scholar 

  • Krak NC, van der Hoeven JJ, Hoekstra OS et al (2003) Measuring (18F) FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J Nucl Med Mol Imaging 30:674–681

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Alavi A (2004) Fluorodeoxyglucose-PET in the management of breast cancer. Radiol Clin North Am 6:1113–1122

    Article  Google Scholar 

  • Machiavelli M, Romero A, Pérez K et al (1998) Prognostic significance of pathological response of primary tumor and metastatic axillary lymph nodes after neoadjuvant chemotherapy for locally advanced breast carcinoma. Cancer J Sci Am 4:125–131

    PubMed  CAS  Google Scholar 

  • Mankoff DA, Dunnwald LK, Gralow JR et al (1999) Monitoring the response of patients with locally advanced breast carcinoma to neoadjuvant chemotherapy using (Technetium-99m)-sestamibi scintimammography. Cancer 85:2410–2423

    Article  PubMed  CAS  Google Scholar 

  • Mankoff DA, Dunnwald LK, Gralow JR et al (2002) Blood flow and metabolism in locally advanced breast cancer: Relationship to response to therapy. J Nucl Med 43:500–509

    PubMed  Google Scholar 

  • Mankoff DA, Dunnwald LK, Gralow JR et al (2003) Changes in blood flow and metabolism in locally advanced breast cancer (LABC) treated with neo-adjuvant chemotherapy. J Nucl Med 44:1806–1814

    PubMed  Google Scholar 

  • McGuire AH, Dehdashti F, Siegel BA et al (1991) Positron tomographic assessment of 16-(18F)fluoro-17-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32:1526–1531

    PubMed  CAS  Google Scholar 

  • Mortimer JE, Dedashti F, Siegel BA et al (2001) Metabolic flare: Indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803

    PubMed  CAS  Google Scholar 

  • Palmedo H (2002) What can we expect from MDR breast cancer imaging with sestamibi? J Nucl Med 43:526–529

    PubMed  Google Scholar 

  • Rasey JX, Koh W, Grieason JR et al (1989) Radiolabelled fluoromisodinazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 17:985–991

    PubMed  CAS  Google Scholar 

  • Sagar SM, Klassen GA, Barclay KD, Aldrich JE (1993) Antitumor treatment: Tumor blood flow-measurement and manipulation for therapeutic gain. Cancer Treat Rev 19:299–349

    Article  PubMed  CAS  Google Scholar 

  • Schelling M, Avril N, Nährig J et al (2000) Positron emission tomography using (18F) fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18:1689–1695

    PubMed  CAS  Google Scholar 

  • Smith TC, Welch AE, Hutcheon AW et al (2000) Positron emission tomography using (18F)-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18:1676–1688

    PubMed  CAS  Google Scholar 

  • Stafford SE, Agraloff JR, Schubert EK et al (2002) Use of serial FDG-PET to measure the response of bone dominant breast cancer to therapy. Acta Radiol 9:913–921

    Article  Google Scholar 

  • Teicher BA (1994) Hypoxia and drug resistance. Cancer Metastasis Rev 13:139–168

    Article  PubMed  CAS  Google Scholar 

  • Tiling R, Linke R, Untch M et al (2001) 18F-FDG-PET and 99mTc-Sestamibi scinti mammography for monitoring breast cancer response to neoadjuvant chemotherapy: A comparative study. Eur J Nucl Med Mol Imaging 28:711–720

    Article  CAS  Google Scholar 

  • Vinnicombe SJ, MacVicar AD, Guy RL et al (1996) Primary breast cancer: Mammographic changes after neoadjuvant chemotherapy, with pathologic correlation. Radiology 198:333–340

    PubMed  CAS  Google Scholar 

  • Vranjesevic D, Filmont JE, Meta J et al (2002) Whole body (18F)-FDG-PET and conventional imaging for predicting outcome in previously treated breast cancer patients. J Nucl Med 43:325–329

    PubMed  Google Scholar 

  • Wahl RL, Zasadny K, Helvie M et al (1993) Metabolic monitoring of breast cancer chemo-hormonotherapy using positron emission tomography: Initial evaluation. J Clin Oncol 11:2101–2111

    PubMed  CAS  Google Scholar 

  • Weber WA, Schwaiger M, Avril N (2002) Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol 27:683–687

    Article  Google Scholar 

  • Wilson CBJH, Lammertsma AA, McKienzie CG, Sikora K, Johns T (1992) Measurement of blood flow and exchanging water space in breast tumors using positron emission tomography: A rapid and non-invasive dynamic method. Cancer Res 52:1592–1597

    PubMed  CAS  Google Scholar 

  • Zangheri B, Messa C, Picchio M et al (2004) PET/CT and breast cancer. Eur J Nucl Med Mol Imaging 1:112–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biersack, HJ., Bender, H., Palmedo, H. (2008). FDG-PET in Monitoring Therapy of Breast Cancer. In: Bombardieri, E., Gianni, L., Bonadonna, G. (eds) Breast Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36781-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36781-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36780-2

  • Online ISBN: 978-3-540-36781-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics