Skip to main content

PET Imaging of Breast Cancer Molecular Biomarkers

  • Chapter
  • 1825 Accesses

Abstract

Cancer produces major biochemical changes in the cell’s energy metabolism, altering utilization of glucose and other substrates, protein synthesis and expression of receptors and antigens. Tumor growth also leads to hypoxia, with heterogeneity in blood flow owing to focal necrosis, neoangiogenesis, as well as disruption of transport mechanisms of substrates across cell membranes and other physiological boundaries. Molecular changes result in cell cycle dysfunction, altered apoptosis and cell differentiation, neovascularization, and tumor cell migration and invasion. Understanding tumorigenesis is crucial for developing molecular therapeutic targets that can overcome current therapeutic limitations. As our understanding of the molecular nature of cancer improves, better methods are being developed to monitor cancer progression and regression in response to treatment. Insights from research into disease-specific biochemical processes have advanced the development of molecular biomarkers as targets for molecular imaging.

A biomarker can be defined as a measurable variable of a molecular, biological or functional process that can also be used as a measure of pharmacologic response to treatment. Biomarker imaging reflects endogenous molecular/genetic processes in normal and pathologic tissues, making it a particularly attractive technique to obtain molecular information that can be rapidly translated into clinically useful information. Biomarkers have proven highly useful for identifying malignant lesions and staging disease extent. In some cases, they can also be used as sensitive indicators of treatment response. Complementary to biopsy and circulating biomarkers assay, biomarker imaging is applied to stage patients and to assess therapeutic response repeatedly in single lesions, as well as to evaluate the global tumor burden at any stage of disease. Many potential imaging targets have been discovered through research in modern genomics and proteomics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler LP, Crowe JP, al-Kaisi NK, Sunshine JL (1993) Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-d-glucose PET. Radiology 187:743–750

    PubMed  CAS  Google Scholar 

  • Alred D, Clatk G, Elledge R (1993) Association of p53 protein expression with tumour cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst 85:200–206

    Article  Google Scholar 

  • Avril N, Dose J, Janicke F (1996) Metabolic characterization of breast tumours with positron emission tomography using F-18 fluorodeoxyglucose. J Clin Oncol 14:1848–1857

    PubMed  CAS  Google Scholar 

  • Avril N, Rose CA, Schelling M, Dose J, Kuhn W, Bense S, Weber W, Ziegler S, Graeff H, Schwaiger M (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18:3495–3502

    PubMed  CAS  Google Scholar 

  • Avril N, Menzel M, Dose J, Schelling M, Weber W, Jänicke F, Nathrath W, Schwaiger M (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 42:9–16

    PubMed  CAS  Google Scholar 

  • Barbareschi M (1996) Prognostic value of immunohistochemical expression of p53 in breast carcinomas. A review of the literature involving over 9,000 patients. Appl Immunohistochem 4:106–116

    Google Scholar 

  • Barnard NJ, Hall PA, Lemoine NR (1987) Proliferative index in breast carcinoma determined in situ by Ki67 immunostaining and its relationship to clinical and pathological variables. J Pathol 152:287–295

    Article  PubMed  CAS  Google Scholar 

  • Barthel H, Wilson H, Collingridge DR, Brown G, Osman S, Luthra SK, Brady F, Workman P, Price PM, Aboagye EO (2004) In vivo evaluation of [18(F)]fluoroetanidazole as a new marker for imaging tumour hypoxia wìth positron emission tomography. Br J Cancer 90:2232–2242

    PubMed  CAS  Google Scholar 

  • Beaney RP, Lammertsma AA, Jones T, McKenzie CG, Halnan KE (1984) Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma. Lancet 1:131–134

    Article  PubMed  CAS  Google Scholar 

  • Been LB, Elsing PH, de Vries J, Cobben DC, Jager PL, Hoekstra HJ, Suurmeijer AJ (2006) Positron emission tomography in patients with breast cancer using (18)F-3-deoxy-3-fluoro-I-thymidine ((18)F-FLT)-a pilot study. Eur J Surg Oncol 32:39–43

    Article  PubMed  CAS  Google Scholar 

  • Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M (2006) Positron emission tomography using [18(F)]Galacto-RGD identifies the level of integrin alpha(v)beta 3 expression in man. Clin Cancer Res 12:3942–3949

    Article  PubMed  CAS  Google Scholar 

  • Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, Tafra L, Adler LP, Uddo J, Stein W, Levine EA (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J 12:309–32

    Article  PubMed  Google Scholar 

  • Blasberg RG (2007) Imaging update: new windows, new views. Clin Cancer Res 13:3444–3448 Schirrmeister H, Kühn T, Guhlmann A, Santjohanser C, Hörster T, Nüssle K, Koretz K, Glatting G, Rieber A, Kreienberg R, Buck A, Reske SN (2001) Fluorine-18 2-deoxy-2-fluoro-d-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med 28:351–358

    Article  PubMed  Google Scholar 

  • Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM, Abeloff MD, Simons JW, van Diest PJ, van der Wall E (2001) Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 93:309–314

    Article  PubMed  CAS  Google Scholar 

  • Bos R, van Der Hoeven JJ, van Der Wall E et al (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387

    Article  PubMed  CAS  Google Scholar 

  • Brown RS, Wahl RL (1993) Overexpression of Glut-1 glucose transporter in human breast cancer. Animmunohistochemicalstudy. Cancer 72:2979–2985

    Article  PubMed  CAS  Google Scholar 

  • Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1995) Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma: I. Are inflammatory cells important? J Nucl Med 36:1854–1861

    PubMed  CAS  Google Scholar 

  • Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1996) Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 37:1042–1047

    PubMed  CAS  Google Scholar 

  • Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL (2002) Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 29:443–453

    Article  PubMed  CAS  Google Scholar 

  • Buck AK, Schirrmeister H, Kuhn T, Shen C, Kalker T, Kotzerke J, Dankerl A, Glatting G, Reske S, Mattfeldt T (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29:1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Buck AK, Schirrmeister H, Hetzel M, Von Der Heide M, Halter G, Glatting G, Mattfeldt T, Liewald F, Reske SN, Neumaier B (2002) 3-deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334

    PubMed  CAS  Google Scholar 

  • Burgman P, Odonoghue JA, Humm JL, Ling CC (2001) Hypoxia-induced increase in FDG uptake inMCF7cells. J Nucl Med 42:170–175

    PubMed  CAS  Google Scholar 

  • Caraco C, Aloj L, Chen LY, Chou JY, Eckelman WC (2000) Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system. J Biol Chem 275:18489–18494

    Article  PubMed  CAS  Google Scholar 

  • Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36:1625–1632

    Google Scholar 

  • Cobben DC, van der Laan BF, Hoekstra HJ, Jager PL, Willemsen AT, Vaalburg W, Suurmeijer AJ, Elsinga PH (2002) Detection of mammary, laryngeal and soft tissue tumors with FLT-PET. J Nucl Med 43:P278

    Google Scholar 

  • Crippa F, Seregni E, Agresti R, Chiesa C, Pascali C, Bogni A, Decise D, De Sanctis V, Greco M, Daidone MG, Bombardieri E (1998) Association between [18F]fluorodeoxy-glucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med 25:1429–1434

    Article  PubMed  CAS  Google Scholar 

  • Crowe JP Jr, Adler LP, Shenk RR, Sunshine J (1994) Positron emission tomography and breast masses: comparison with clinical, mammographic, and pathological findings. Ann Surg Oncol 1:132–140

    Article  PubMed  Google Scholar 

  • Dehdashti F, Mortimer J, Siegel B (1995) Positron tomographic assessment of estrogen receptors in breast cancer: a comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36:1766–1774

    PubMed  CAS  Google Scholar 

  • den Bakker MA, van Weeszenberg A, de Kanter AY, Beverdam FH, Pritchard C, van der Kwast TH, Menke-Pluymers M (2002) Non-sentinel lymph node involvement in patients with breast cancer and sentinel node micrometastasis; too early to abandon axillary clearance. J Clin Pathol 55:932–935

    Article  Google Scholar 

  • Dettmar P, Harbeck N, Thommsen C, Pache L, Ziffer P, Fizi K, Janicke F, Nathrath W, Schmitt M, Graeff H, Hofler H (1997) Prognostic impact of proliferation-associated factorsMIB1 (Ki-67) and S-phase in node-negative breast cancer. Br J Cancer 75:1525–1533

    PubMed  CAS  Google Scholar 

  • Engles JM, Quarless SA, Mambo E, Ishimori T, Cho SY, Wahi RL (2006) Stunning and its effect on 3H-FDG uptake and key gene expression in breast cancer cells undergoing chemotherapy. J Nucl Med 47:603–608

    PubMed  CAS  Google Scholar 

  • Gebauer G, Fehm T, Merkle E, Jaeger W, Mitze M (2003) Micrometastases in axillary lymph nodes and bone marrow of lymph node-negative breast cancer patients-prognostic relevance after 10 years. Anticancer Res 23:4319–4324

    PubMed  Google Scholar 

  • Grierson JR, Shields AF (2000) Radiosynthesis of 3-deoxy-3-18F-fluorothymidine: 18F-FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 27:143–156

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  • Hasan J, Byers R, Jayson GC (2002) Intra-tumoural microvessel density in human solid tumours. Br J Cancer 86:1566–1577

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka M (1974) Transport of sugars in tumor cell membranes. Biochim Biophys Acta 355:77–104

    PubMed  CAS  Google Scholar 

  • Hayes DF, Isaacs C, Stearns V (2001) Prognostic factors in breast cancer: current and new predictors of metastasis. J Mammary Gland Biol Neoplasia 6:375–392

    Article  PubMed  CAS  Google Scholar 

  • Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34:414–419

    PubMed  CAS  Google Scholar 

  • Isselbacher KJ (1972) Sugar and amino acid transport by cells in culture — differences between normal and malignant cells. N Engl J Med 286:929–933

    Article  PubMed  CAS  Google Scholar 

  • Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 13:1470–1477

    PubMed  CAS  Google Scholar 

  • Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, Coombes RC, Aboagye EO (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18(F)]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65:10104–10112

    Article  PubMed  CAS  Google Scholar 

  • Kenny LM, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3-deoxy-3-[(18)F]fluorothymidine positron emission tomography. Eur J Nucl Mol Imaging 34:1339–1347

    Article  Google Scholar 

  • Keshgegian A, Cnaan A (1995) Proliferation markers in breast carcinoma. Am J Cell Pathol 5:42–49

    Google Scholar 

  • Kubota K, Matsuzawa T, Fujiwara T et al (1990) Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med 31:1927–1932

    PubMed  CAS  Google Scholar 

  • Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    PubMed  CAS  Google Scholar 

  • Kubota R, Kubota K, Yamada S et al (1995) Methionine uptake by tumour tissue: a microautioradiographic comparison with FDG. J Nucl Med 36:484–492

    PubMed  CAS  Google Scholar 

  • Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A (2006) Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat 98:267–274

    Article  PubMed  Google Scholar 

  • Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A (2006) Standardized uptake value of normal breast tissue with 2-deoxy-2-[F-18]fluoro-D-:-glucose positron emission tomography: variation with age, breast density and menopausal status. Mol Imaging Biol 8:355–362

    Article  PubMed  Google Scholar 

  • Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Joensuu H (1991) Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer 64:1121–1124

    PubMed  CAS  Google Scholar 

  • Linden HM, Stekova SA, Link JM, Gralow JR, Livingston RB, Ellis GK, Petra PH, Peterson LM, Schubert EK, Dunnwald LK, Krohn KA, Mankoff DA (2006) Quantitative fluoroestradiol positron tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24:2793–2799

    Article  PubMed  CAS  Google Scholar 

  • Loprinzi CL, Thome SD (2001) Understanding the utility of adjuvant systemic therapy for primary breast cancer. J Clin Oncol 19:972–979

    PubMed  CAS  Google Scholar 

  • MacGrogan G, Mauriac L, Durand M, Bonichon F, Trojani M, deMascarel I, Coindre J (1996) Primary chemotherapy in breast invasive carcinoma: predictive value of the immunohistochemical detection of hormonal receptors, p53, c-erbB-2, MIB1, pS2 and GSTπ. Br J Cancer 74:1458–1465

    PubMed  CAS  Google Scholar 

  • Maschauer S, Prante O, Hoffmann M, Deichen JT, Kuwert T (2004) Characterization of 18F-FDG uptake in human endothelial cells in vitro. J Nucl Med 45:455–460

    PubMed  CAS  Google Scholar 

  • Masood S, Chiao J (1998) Pathology of breast cancer. In: Taillefer R, Khalkhali I, Waxman AD, Biersack HJ, eds. Radionuclide imaging of the breast. New York: Dekker

    Google Scholar 

  • Mathupala SP, Rempel A, Pedersen PL (2001) Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxicconditions. J Biol Chem 276:43407–43412

    Article  PubMed  CAS  Google Scholar 

  • McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ, Mintun MA, Katzenellenbogen JA, Welch MJ (1991) Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32:1526–1531

    PubMed  CAS  Google Scholar 

  • Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803

    PubMed  CAS  Google Scholar 

  • Oshida M, Uno K, Suzuki M et al (1998) Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2-deoxy-2-fluoro[18F]-d-glucose. Cancer 82:2227–2234

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Yilmaz M, Guldberg P, Hansen L, Alsner J (2000) TP53 mutation is an independent prognostic marker for poor outcome in both node-negative and node-positive breast cancer. Acta Oncol 39:327–333

    Article  PubMed  CAS  Google Scholar 

  • Pedersen MW, Holm S, Lund EL, Hojgaard L, Kristjansen PE (2001) Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublinesinvivoandinvitro. Neoplasia 3:80–87

    Article  PubMed  CAS  Google Scholar 

  • Pich A, Margaria E, Chiusa L (2000) Oncogenes and male breast carcinoma: c-erbB-2 and p53 coexpression predicts a poor survival. J Clin Oncol 18:2948–2956

    PubMed  CAS  Google Scholar 

  • Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJ, Wiebe LI, Schwaiger M (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113

    PubMed  Google Scholar 

  • Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, Czernin J, Phelps ME, Silverman DH (2006) Usefulness of 3-[F-18]fluoro-3-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8:36–42

    Article  PubMed  Google Scholar 

  • Rajendran JG, Krohn KA (2005) Imaging hypoxia and angiogenesis in tumours. Radiol Clin North Am 43:169–187

    Article  PubMed  Google Scholar 

  • Reske SN, Grillenberger KG, Glatting G et al (1997) Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med 38:1344–1348

    PubMed  CAS  Google Scholar 

  • Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL (1996) Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res 56:2468–2471

    PubMed  CAS  Google Scholar 

  • Rudolph P, Alm P, Olsson H, Heidebrecht H, Ferno M, Baldetorp B, Parwaresch R (2001) Concurrent overexpression of p53 and c-erbB-2 correlates with accelerated cycling and concomitant poor prognosis in node-negative breast cancer. Hum Pathol 32:311–319

    Article  PubMed  CAS  Google Scholar 

  • Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with 18F-FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Smith TA, Sharma RI, Thompson AM, Paulin FE (2006) Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. J Nucl Med 47:1525–1530

    PubMed  CAS  Google Scholar 

  • Torizuka T, Zasadny KR, Recker B, Wahl RL (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207:767–774

    PubMed  CAS  Google Scholar 

  • Veronesi U, De Cicco C, Galimberti VE, Fernandez JR, Rotmensz N, Viale G, Spano G, Luini A, Intra M, Veronesi P, Berrettini A, Paganelli G (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18:473–478

    Article  PubMed  CAS  Google Scholar 

  • Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH (2006) Synthesis of [11(C)]Iressa as a new potential PET cancere imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett 16:4102–4106

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1924) PKNE. Ueber den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–3444

    CAS  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wester HJ (2007) Nuclear imaging probes: from bench to bedside. Clin Cancer Res 13:3470–3481

    Article  PubMed  CAS  Google Scholar 

  • Wilson CB, Lammertsma AA, McKenzie CG, Sikora K, Jones T (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 52:1592–1597

    PubMed  CAS  Google Scholar 

  • Wolf G, Aigner RM, Schaffler G, Langsenlehner U, renner W, Samonigg H, Yazdani-Bluki B, Krippl P (2004) The 936C>T polymorphism of the gene for vascular endothelial growth factor is associated with 18F-fluorodeoxyglucose uptake. Breast Cancer Res Treat 88:205–208

    Article  PubMed  CAS  Google Scholar 

  • Yagle KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, Gibson DF, Krohn KA (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46:658–666

    PubMed  CAS  Google Scholar 

  • Zasadny KR, Tatsumi M, Wahl RL (2003) FDG metabolism and uptake versus blood flow in women with untreated primary breast cancers. Eur J Nucl Med Mol Imaging 30:274–280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brugola, E., Buck, A.K., Tagliabue, L., Reske, S.N., Lucignani, G. (2008). PET Imaging of Breast Cancer Molecular Biomarkers. In: Bombardieri, E., Gianni, L., Bonadonna, G. (eds) Breast Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36781-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36781-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36780-2

  • Online ISBN: 978-3-540-36781-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics