Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 59))

  • 1515 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad LR, D’Urzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK, Niu X, Singh NK, Hasegawa MP, Bressan RA (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118:11–23

    Article  CAS  Google Scholar 

  • Adam KP, Thiel R, Zapp J (1999) Incorporation of 1-[1-13C] deoxy-D-xylulose in chamomile sesquiterpenes. Arch Biochem Biophys 369:127–132

    Article  PubMed  CAS  Google Scholar 

  • Alonso WR, Croteau R (1993) Prenyltransferases and cyclases. In: Dey PM, Harborne JB (eds) Methods in plant bochemistry, vol 9. Academic, London, pp 239–260

    Google Scholar 

  • Ansari MA, Vasudevan P, Tandon M, Razdan RK (2000) Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresour Technol 71:267–271

    Article  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeleton rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    Article  PubMed  CAS  Google Scholar 

  • Asao T, Kuwano H, Ide M, Hirayama I, Nakamura JI, Fujita K, Horiuti R (2003) Spasmolytic effect of peppermint oil in barium during double-contrast barium enema compared with buscopan. Clin Radiol 58:301–305

    Article  PubMed  CAS  Google Scholar 

  • Aviv D, Galun E (1978) Biotransformation of monoterpenes by Mentha cell lines: conversion of pulegone to isomenthone. Planta Med 33:70–77

    PubMed  CAS  Google Scholar 

  • Aviv D, Dantes A, Krochmal E, Galun E (1983) Biotransformation of monoterpenes by Mentha cell lines. Conversion of pulegone-substituents and related unsaturated α-β ketones. Planta Med 47:7–10

    Article  PubMed  CAS  Google Scholar 

  • Banthorpe DV (1996) Mentha species (mints): in vitro culture and production of lower terpenoids and pigments. In: Bajaj YPS (ed) Medicinal and aromatic plants IX. (Biotechnology in agriculture and forestry, vol 37) Springer, Berlin Heidelberg New York, pp 202–225

    Google Scholar 

  • Barnard DR (1999) Repellency of essential oils to mosquitoes (Diptera: Culicidae). J Med Entomol 36:625–629

    PubMed  CAS  Google Scholar 

  • Berry C, Van Eck JM, Kitto SL, Smigocki A (1996) Agrobacterium-mediated transformation of commercial mints. Plant Cell Tissue Organ Cult 44:177–181

    Article  Google Scholar 

  • Berta G, Dela Pierre M, Maffei M (1993) Nuclear morphology and DNA content in the glandular trichomes of peppermint (Mentha × piperita L.). Protoplasma 175:85–92

    Article  CAS  Google Scholar 

  • Bertea C, Schalk M, Karp F, Maffei M, Croteau R (2001) Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene. Arch Biochem Biophys 390:279–286

    Article  PubMed  CAS  Google Scholar 

  • Bertea C, Schalk M, Mau C, Karp F, Wildung MR, Croteau R (2003) Molecular evaluation of a spearmint mutant altered in the expression of limonene hydroxylases that direct essential oil monoterpene biosynthesis. Phytochemistry 64:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Gershenzon J, Konings MCJM, Croteau R (1998) Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. Plant Physiol 117:901–912

    Article  PubMed  CAS  Google Scholar 

  • Bricout J, Paupardin C (1975) Sur la composition de l’huile essentielle de Mentha piperita L. cultivée in vitro: influence de quelques facteurs sur sa synthèse. C R Acad Sci Paris Ser D 281:383–386

    CAS  Google Scholar 

  • Bricout J, Garcia-Rodriguez MJ, Paupardin C, Saussay R (1978a) Biosynthèse de composés monoterpéniques sur les tissus de quelques espèces de menthes cultivées in vitro. C R Acad Sci Ser D 287:611–613

    CAS  Google Scholar 

  • Bricout J, Garcia-Rodriguez MJ, Paupardin C (1978b) Action de la colchicine sur la synthèse d’huile essentielle par des tissus de Mentha piperita cultivés in vitro. C R Acad Sci Ser D 286:1585–1588

    CAS  Google Scholar 

  • Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209

    Article  PubMed  CAS  Google Scholar 

  • Brun N, Colson M, Perrin A, Voirin B (1991) Chemical and morphological studies of the effects of ageing on monoterpene composition in Mentha × piperita leaves. Can J Bot 69:2271–2278

    CAS  Google Scholar 

  • Burbott AJ, Loomis WD (1967) Effects of light and temperature on the monoterpenes of peppermint. Plant Physiol 42:20–28

    PubMed  CAS  Google Scholar 

  • Burke CC, Wildung MR, Croteau R (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci USA 96:13062–13067

    Article  PubMed  CAS  Google Scholar 

  • Caissard J-C, Faure O, Jullien F, Colson M, Perrin A (1996) Direct regeneration in vitro and transient GUS expression in Mentha × piperita. Plant Cell Rep 16:67–70

    CAS  Google Scholar 

  • Cellarova E (1992) Micropropagation of Mentha L. In: Bajaj YPS (ed) High-tech and micropropagation III. (Biotechnology in agriculture and forestry, vol 19) Springer, Berlin Heidelberg New York, pp 262–276

    Google Scholar 

  • Chang JH, Shin JH, Chung IS (1998) Improved menthol production from chitosan-elicited suspension culture of Mentha piperita. Biotechnol Lett 20:1097–1099

    Article  CAS  Google Scholar 

  • Chappell J (2002) The genetics and molecular genetics of terpene and sterol origami. Curr Opin Plant Biol 5:151–157

    Article  PubMed  CAS  Google Scholar 

  • Chappell J (2004) Valencene synthase — a biochemical magician and harbinger of transgenic aromas. Trends Plant Sci 9:266–269

    Article  PubMed  CAS  Google Scholar 

  • Chaput M-H, San H, Hys L, Grenier E, David H, David A (1996) How plant regeneration from Mentha × piperita L. and Mentha × citrate Ehrh. leaf protoplasts affect their monoterpene composition in field conditions. J Plant Physiol 149:481–488

    CAS  Google Scholar 

  • Clark RJ, Menary RC (1979) The importance of harvest date and plant density on the yield and quality of Tasmanian peppermint oil. J Am Soc Hortic Sci 104:702–706

    CAS  Google Scholar 

  • Clark RJ, Menary RC (1980) Environmental effects on peppermint (Mentha piperita L.) I. Effect of daylength, photon flux density, night temperature and day temperature on the yield and composition of peppermint oil. Aust J Plant Physiol 7:685–692

    CAS  Google Scholar 

  • Colby SM, Alonso WR, Katahira EJ, McGarvey DJ, Croteau R (1993) 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata). J Biol Chem 268:23016–23024

    PubMed  CAS  Google Scholar 

  • Colson M, Pupier R, Perrin A (1993) Etude biomathématique du nombre de glandes peltées des feuilles de Mentha × piperita. Can J Bot 71:1202–1211

    Google Scholar 

  • Crock J, Wildung M, Croteau R (1997) Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha × piperita L.) that produces the aphid alarm pheromone (E)-β-farnesene. Proc Natl Acad Sci USA 94:12833–12838

    Article  PubMed  CAS  Google Scholar 

  • Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    Article  CAS  Google Scholar 

  • Croteau R (1991) Metabolism of monoterpenes in mint (Mentha) species. Planta Med 57[Suppl 1]:10–14

    Article  Google Scholar 

  • Croteau R, Davis EM (2005) (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92:562–577

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Sood VK (1985) Metabolism of monoterpenes: evidence for the function of monoterpenes catabolism in peppermint (Mentha piperita) rhizomes. Plant Physiol 77:801–806

    PubMed  CAS  Google Scholar 

  • Croteau R, Winters JN (1982) Demonstration of the intercellular compartmentation of l-menthone metabolim in peppermint (Mentha piperita) leaves. Plant Physiol 69:975–977

    PubMed  CAS  Google Scholar 

  • Croteau R, Sood VK, Renstrom B, Bhushan R (1984) Metabolism of monoterpenes: early steps in the metabolism of δ-neomenthyl-β-D-glucoside in peppermint (Mentha piperita) rhizomes. Plant Physiol 76:647–653

    PubMed  CAS  Google Scholar 

  • Croteau R, Karp F, Wagschal KC, Satterwhite DM, Hyatt DC, Skotland CB (1991) Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content. Plant Physiol 96:744–752

    PubMed  CAS  Google Scholar 

  • Crowell AL, Williams DC, Davis EM, Wildung MR, Croteau R (2002) Molecular cloning and characterization of a new linalool synthase. Arch Biochem Biophys 405:112–121

    Article  PubMed  CAS  Google Scholar 

  • Davis EM, Ringer KL, McConkey ME, Croteau R (2005) Monoterpene metabolism. Cloning, expression, and characterization of menthone reductases from peppermint. Plant Physiol 137:873–881

    Article  PubMed  CAS  Google Scholar 

  • Dhawan S, Shasany AK, Naqvi AA, Kumar S, Khanuja SPS (2003) Menthol tolerant clones of Mentha arvensis: approach for in vitro selection of menthol rich genotypes. Plant Cell Tissue Organ Cult 75:87–94

    Article  CAS  Google Scholar 

  • Diemer F (2000) Apport de la transgenèse à la compréhension du métabolisme des monoterpènes chez différentes espèces de menthe. PhD thesis, University Jean Monnet, St Etienne

    Google Scholar 

  • Diemer F, Jullien F, Faure O, Moja S, Colson M, Matthys-Rochon E, Caissard J-C (1998) High efficiency transformation of peppermint (Mentha × piperita L.) with Agrobacterium tumefaciens. Plant Sci 136:101–108

    Article  CAS  Google Scholar 

  • Diemer F, Caissard J-C, Moja S, Jullien F (1999) Agrobacterium tumefaciens-mediated transformation of Mentha spicata and Mentha arvensis. Plant Cell Tissue Organ Cult 57:75–78

    Article  Google Scholar 

  • Diemer F, Caissard J-C, Moja S, Chalchat J-C, Jullien F (2001) Altered monoterpene composition in transgenic mint following the introduction of 4S-limonene synthase. Plant Physiol Biochem 39:603–614

    Article  CAS  Google Scholar 

  • Duncan RR (1997) Tissue culture-induced variation and crop improvement. In: Sparks DL (ed) Advances in agronomy, vol 58. Academic, London, pp 201–210

    Google Scholar 

  • Duriyaprapan S, Britten EJ (1982) The effect of age and location on quantity and quality of Japanese mint oil production. J Exp Bot 33:810–814

    Article  Google Scholar 

  • Dwivedi S, Khan M, Srivastava SK, Syamasunnder KV, Srivastava A (2004) Essential oil composition of different accessions of Mentha × piperita L. grown on the northern plains of India. Flavour Fragr J 19:437–440

    Article  CAS  Google Scholar 

  • Edris AE, Farrag ES (2003) Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapour phase. Narhung 47:117–121

    CAS  Google Scholar 

  • Edwards J, Parbery DG, Taylor PA, Halloran GM (1999) Effects of Puccinia menthae on growth and yield of Todd’s Micham peppermint (Mentha × piperita). Aust J Agric Res 50:1273–1278

    Article  Google Scholar 

  • Eisenreich W, Sagner S, Zenk MH, Bacher A (1997) Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Lett 38:3889–3892

    Article  CAS  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84

    Article  PubMed  CAS  Google Scholar 

  • El Tamer MK, Lücker J, Bosch D, Verhoeven HA, Verstappen F, Schwab W, Van Tunen AJ, Voragen A, Maagd RA de, Bouwmeester HJ (2003) Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specificity. Arch Biochem Biophys 411:196–203

    Article  PubMed  CAS  Google Scholar 

  • Ezzat SM (2001) In vitro inhibition of Candida albicans growth by plant extracts and essential oils. World J Microbiol Biotechnol 17:757–759

    Article  CAS  Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic, London

    Google Scholar 

  • Fäldt J, Martin D, Miller B, Rawat S, Bohlmann J (2003) Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol Biol 51:119–133

    Article  PubMed  Google Scholar 

  • Faure O, Diemer F, Moja S, Jullien F (1998) Mannitol and thidiazuron improve in vitro shoot regeneration from spearmint and peppermint leaf disks. Plant Cell Tissue Organ Cult 52:209–212

    Article  CAS  Google Scholar 

  • Fenwick AL, Ward SM (2001) Use of random amplified polymorphic DNA markers for cultivar identification. HortScience 36:761–764

    CAS  Google Scholar 

  • Fowler DJ, Hamilton JTG, Humphrey AJ, O’Hagan D (1999) Plant terpene biosynthesis. The biosynthesis of linalyl acetate in Mentha citrata. Tetrahedron Lett 40:3803–3806

    Article  CAS  Google Scholar 

  • Franzios G, Mirotsou M, Hatziapostolou E, Kral J, Scouras ZG, Mavragani-Tsipidou P (1997) Insecticidal and genotoxic activities of mint essential oils. J Agric Food Chem 45:2690–2694

    Article  CAS  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  • Galun E, Aviv D, Dantes A, Freeman A (1983) Biotransformation by plant cells immobilized in cross-linked polyacrylamide-hydrazide. Planta Med 49:9–13

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gantet P, Memelink J (2002) Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharma Sci 23:563–569

    Article  CAS  Google Scholar 

  • Gershenzon J, Maffei M, Croteau R (1989) Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (M. spicata). Plant Physiol 89:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, McConkey ME, Croteau RB (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–213

    Article  PubMed  CAS  Google Scholar 

  • Glover BJ, Perez-Rodriguez M, Martin C (1998) Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125:3497–3508

    PubMed  CAS  Google Scholar 

  • Gobert V, Moja S, Colson M, Taberlet P (2002) Hybridization in the section Mentha (Lamiaceae) inferred from AFLP markers. Am J Bot 89:2017–2023

    CAS  Google Scholar 

  • Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé D, Caldentey KMO (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  PubMed  CAS  Google Scholar 

  • Ha W-H, Woo G-J, Lee HJ (1997) Optimization for elicitation in immobilized culture of peppermint cells. Foods Biotechnol 6:234–238

    Google Scholar 

  • Hahn FM, Hurlburt AP, Poulter CD (1999) Escherichia coli open reading frame 696 Is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181:4499–4504

    PubMed  CAS  Google Scholar 

  • Harley RM (1967) The spicate mints. Proc Bot Soc Brit Isles 6:369–372

    Google Scholar 

  • Harley RM (1972) Notes on the genus Mentha (Labiatae). Bot J Linn Soc 65:250–253

    Google Scholar 

  • Harley RM, Brighton CA (1977) Chromosome numbers in the genus Mentha L. Bot J Linn Soc 74:71–96

    Google Scholar 

  • Haudenschild CD, Croteau RB (1998) Molecular engineering of monoterpene production. In: Setlow JK (ed) Genetic engineering, vol 20. Plenum, New York, pp 267–280

    Google Scholar 

  • Hirata T, Murakami S, Ogihara K, Suga T (1990) Volatile monoterpenoid constituents of the plantlets of Mentha spicata produced by shoot tip culture. Phytochemistry 29:493–495

    Article  CAS  Google Scholar 

  • Imai H, Osawa K, Yasuda H, Hamashima H, Arai T. Sasatsu M (2001) Inhibition by the essential oils of peppermint and spearmint of the growth of pathogenic bacteria. Microbios 106:31–39

    PubMed  CAS  Google Scholar 

  • Inouye S, Yamagushi H, Takizawa T (2001) Screening of the antibacterial effects of a variety of essentials oils on respiratory tract pathogens, using a modified dilution assay method. J Infect Chemother 7:251–254

    Article  PubMed  CAS  Google Scholar 

  • Johnson DA, Cummings TF (2000) Evaluation of mint mutants, hybrids, and fertile clones for resistance to Verticillium dahliae. Plant Dis 84:235–238

    Article  Google Scholar 

  • Jullien F, Diemer F, Colson M, Faure O (1998) An optimising protocol for protoplast regeneration of three peppermint cultivars (Mentha × piperita). Plant Cell Tissue Organ Cult 54:153–159

    Article  CAS  Google Scholar 

  • Kak SN, Kaul BL (1981) Mutation studies in Mentha spicata L. Proc Ind Acad Sci 90:211–215

    CAS  Google Scholar 

  • Karp F, Mihaliak CA, Harris JL, Croteau R (1990) Monoterpene biosynthesis: specificity of the hydroxylations of (—)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch Biochem Biophys 276:219–226

    Article  PubMed  CAS  Google Scholar 

  • Katoh S, Hyatt D, Croteau R (2004) Altering product outcome in Abies grandis (—)-limonene synthase and (—)-limonene/(—)-α-pinene synthase by domain swapping and directed mutagenesis. Arch Biochem Biophys 425:65–76

    Article  PubMed  CAS  Google Scholar 

  • Kawabe S, Fujiwara H, Murakami K, Hosomi K (1993) Volatiles constituents of Mentha arvensis cultures. Biosci Biotechnol Biochem 57:657–658

    Article  CAS  Google Scholar 

  • Khanuja SPS, Shasany AK, Srivastava A, Kumar S (2000) Assessment of genetic relationships in Mentha species. Euphytica 111:121–125

    Article  Google Scholar 

  • Kim G-S, Park S-H, Chang Y-J, Lim Y-H, Kim S-U (2002) Transformation of menthane monoterpenes by Mentha piperita cell culture. Biotechnol Lett 24:1553–1556

    Article  CAS  Google Scholar 

  • Kim JM, Marshall MR, Cornell JA, Wei CI (1995) Antibacterial activity of some essential components against five food-borne pathogens. J Agric Food Chem 43:2839–2845

    Article  CAS  Google Scholar 

  • Kireeva SA, Melnikov VN, Reznikova SA, Mesheryalova NI (1978) Accumulation of essential oil in callus cultures of peppermint. Fiziol Rast 25:564–570

    CAS  Google Scholar 

  • Kirik V, Schnittger A, Radchuk V, Adler K, Hülskamp M, Bäumlein H (2001) Ectopic expression of the Arabidopsis AtMYB23 gene induces differentiation of trichome cells. Dev Biol 235:366–377

    Article  PubMed  CAS  Google Scholar 

  • Kokkini S (1991) Chemical races within the genus Mentha L. In: Linskens HF, Jackson JF (eds) Essential oils and waxes. Springer, Berlin Heidelberg New York, pp 63–78

    Google Scholar 

  • Krasnyanski S, Ball TM, Sink KC (1998) Somatic hybridization in mint: identification and characterization of Mentha piperita (+) M. spicata hybrid plants. Theor Appl Genet 96:683–687

    Article  Google Scholar 

  • Krasnyanski S, May RA, Loskutov A, Ball TM, Sink KC (1999) Transformation of the limonene synthase gene into peppermint (Mentha piperita L.) and preliminary studies on the essential oil profiles of single transgenic plants. Theor Appl Genet 99:676–682

    Article  CAS  Google Scholar 

  • Kukreja AK, Dhawan OP, Mathur AK, Ahuja PS, Mandal S (1991) Screening and evaluation of agronomically useful somaclonal variations in Japanese mint (Mentha arvensis L.). Euphytica 53:183–191

    Article  Google Scholar 

  • Lange BM, Croteau R (1999a) Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch Biochem Biophys 365:170–174

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Croteau R (1999b) Genetic engineering of essential oil production in mint. Curr Opin Plant Biol 2:139–144

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Croteau R (1999c) Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: isopentenyl-monophosphate kinase catalyzes the terminal enzymatic step. Proc Natl Acad Sci USA 96:13714–13719

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Wildung MR, McCaskill D, Croteau R (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci USA 95:2000–2004

    Article  Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Ketchum R, Croteau R (2001) Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis. Plant Physiol 127:305–314

    Article  PubMed  CAS  Google Scholar 

  • Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111

    Article  CAS  Google Scholar 

  • Lawrence BM (1978) A sudy of the monoterpene interrelationships in the genus Mentha with special reference to the origin of pulegone and menthofuran. PhD thesis, University of Groningen, Groningen

    Google Scholar 

  • Lawrence BM (1980) The existence of infraspecific differences in specific genera in the Labiatae family. Int Congr Essential Oils 8:118–123

    Google Scholar 

  • Lebeau L (1974) Nouvelles mises au point dans le genre Mentha. Nat Mosana 27:109–141

    Google Scholar 

  • Lee HJ, Pai T, Lee HJ (1997) Characteristics of cell growth and essential oil accumulation in spearmint cell suspension culture. Foods Biotechnol 6:190–192

    Google Scholar 

  • Li L, Zhao Y, McCraig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonte-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    Article  PubMed  CAS  Google Scholar 

  • Li X, Niu X, Bressan RA, Weller SC, Hasegawa PM (1999) Efficient plant regeneration of native spearmint (Mentha spicata L.). In Vitro Cell Dev Biol Plant 35:333–338

    CAS  Google Scholar 

  • Li X, Gong Z, Koiwa H, Niu X, Espartero J, Zhu X, Veronese P, Ruggiero B, Bressan RA, Weller SC, Hasegawa PM (2001) Bar-expressing peppermint (Mentha × piperita L. var. Black Mitcham) plants are highly resistant to the glufosinate herbicide Liberty. Mol Breed 8:109–118

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    Article  CAS  Google Scholar 

  • Limberger J, Heuberger E, Mahrhofer C, Dessovic H, Kowarik D, Buchbauer G (2001) The influence of essential oils on human attention I: alertness. Chem Senses 26:239–245

    Article  Google Scholar 

  • Lin M-L, Staba EJ (1961) Peppermint and spearmint tissue cultures. I. Callus formation and submerged culture. Lloydia 24:139–145

    CAS  Google Scholar 

  • Linnaeus (1767) Systema naturae, tomus II. Linnaeus, Stockholm. pp 391–392

    Google Scholar 

  • Lis-Balchin M, Hart S (1999) Studies on the mode of action of peppermint oil Mentha × piperita L. in the guinea-pig ileum in vitro. Med Sc Res 27:307–309

    CAS  Google Scholar 

  • Lücker J, Bouwmeester HJ, Schwab W, Blaas J, Van der Plas L, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside. Plant J 27:315–324

    Article  PubMed  Google Scholar 

  • Lücker J, Schwab W, Franssen MCR, Van der Plas L, Bouwmeester HJ, Verhoeven HA (2004a) Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-transisopiperitenol by tobacco. Plant J 39:135–145

    Article  PubMed  CAS  Google Scholar 

  • Lücker J, Schwab W, Van Hautum B, Blaas J, Van der Plas L, Bouwmeester HJ, Verhoeven HA (2004b) Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol 134:510–519

    Article  PubMed  CAS  Google Scholar 

  • Lupien S, Karp F, Wildung M, Croteau R (1999) Regio-specific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (—)-4S-limonene-3-hydroxylase and (—)-4S-limonene-6-hydroxylase. Arch Biochem Biophys 368:181–192

    Article  PubMed  CAS  Google Scholar 

  • Maffei M, Scannerini S (1999) Photomorphogenetic and chemical responses to blue light in Mentha piperita. J Essent Oil Res 11:730–738

    CAS  Google Scholar 

  • Maffei M, Chialva F, Sacco T (1989) Glandular trichomes and essential oils in developing peppermint leaves. New Phytol 111:707–716

    Article  CAS  Google Scholar 

  • Maffei M, Canova D, Bertea CM, Scannerini S (1999) UV-A effects on photomorphogenesis and essential-oil composition in Mentha piperita. J Photochem Photobiol 52:105–110

    Article  CAS  Google Scholar 

  • Mahmoud S, Croteau R (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98:8915–8920

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud S, Croteau R (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud S, Croteau R (2003) Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc Natl Acad Sci USA 100:14481–14486

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud S, Williams M, Croteau R (2004) Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65:547–554

    Article  PubMed  CAS  Google Scholar 

  • Malinvaud E (1880). Simple apercu des hybrides dans le genre Mentha. Bull Soc Bot Fr 27:332–347

    Google Scholar 

  • Marks MD (1997) Molecular genetic analysis of trichome development in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48:137–163

    Article  PubMed  CAS  Google Scholar 

  • Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage at Norway spruce. Plant Physiol 132:1586–1599

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJM (1996) Stable epigenetic states in differentiated plant cells: implications for somaclonal variation and gene silencing in transgenic plants. In: Russo VEA, Martienssen RA, Riggs AD (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory, New York, pp 377–392

    Google Scholar 

  • McCaskill D, Croteau R (1998) Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol 16:349–355

    Article  CAS  Google Scholar 

  • McCaskill D, Croteau R (1999a) Isopentenyl diphosphate is the terminal product of the deoxyxylulose 5-phosphatepathway for terpenoid biosynthesis in plants. Tetrahedron Lett 40:653–656

    Article  CAS  Google Scholar 

  • McCaskill D, Croteau R (1999b) Strategies for bioengineering the development and metabolism of glandular tissues in plants. Nat Biotechnol 17:31–36

    Article  PubMed  CAS  Google Scholar 

  • McConkey ME, Gershenzon J, Croteau R (2000) Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol 122:215–223

    Article  PubMed  CAS  Google Scholar 

  • Medou G, Faure O, Jullien F, Colson M, Perrin A. (1997) Caulogenèse et synthèse terpénique in vitro chez la menthe poivrée. Acta Bot Gall 144:371–379

    Google Scholar 

  • Micklefield G, Jung O, Greving I, May B (2003) Effects of intraduodenal application of peppermint oil and caraway oil on gastroduodenal motility in healthy volunteers. Phytotherapy Res 17:135–140

    Article  CAS  Google Scholar 

  • Morton JK (1956) The chromosome number of the British Menthae. Watsonia 3:244–252

    Google Scholar 

  • Mucciarelli M, Scannerini S, Berte G, Maffei M (2003) In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol 158:579–591

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assay with tobacco tissue cultures. Physiol Plant 15:476–497

    Article  Google Scholar 

  • Niu X, Lin K, Hasegawa PM, Bressan RA (1998) Transgenic peppermint (Mentha × piperita L.) plants obtained by cocultivation with Agrobacterium tumefaciens. Plant Cell Rep 17:165–171

    Article  CAS  Google Scholar 

  • Niu X, Li X, Veronese P, Bressan RA, Weller SC, Hasegawa PM (2000) Factors affecting Agrobacterium tumefaciens-mediated transformation of peppermint. Plant Cell Rep 19:304–310

    Article  CAS  Google Scholar 

  • Park S-H, Kim S-U (1998) Modified monoterpenes from biotransformation of (−)-isopiperitenone by suspension cell culture of Mentha piperita. J Nat Prod 61:354–357

    Article  PubMed  CAS  Google Scholar 

  • Park S-H, Kim K-S, Suzuki Y, Kim S-U (1997) Metabolism of isopiperitenones in cell suspension culture of Mentha piperita. Phytochemistry 44:623–626

    Article  CAS  Google Scholar 

  • Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349–1362

    PubMed  CAS  Google Scholar 

  • Perazza D, Vachon G, Herzog M (1998) Gibberellins promote trichome formation by up-regulating GLABROUS 1 in Arabidopsis. Plant Physiol 117:375–383

    Article  PubMed  CAS  Google Scholar 

  • Perrin A, Colson M (1991) Timing of the harvest date for Mentha × piperita based on observations of the floral development. J Essent Oil Res 3:17–25

    Google Scholar 

  • Pesch M, Hülskamp M (2004) Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr Opin Genet Dev 14:422–427

    Article  PubMed  CAS  Google Scholar 

  • Phatak SV, Heble MR (2002) Organogenesis and terpenoid synthesis in Mentha arvensis. Fitoterapia 73:32–39

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  PubMed  CAS  Google Scholar 

  • Prosser IM, Adams RJ, Beale MH, Hawkins ND, Phillips AL, Pickett JA, Field LM (2006) Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Mentha × piperita) and direct evidence for a chemotype unable to synthesise franesene. Phytochemistry (in press)

    Google Scholar 

  • Rajaonarivony JIM, Gershenzon J, Croteau R (1992) Characterization and mechanism of (4S)-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha × piperita). Arch Biochem Biophys 296:49–57

    Article  PubMed  CAS  Google Scholar 

  • Rech EL, Pires MJP (1986) Tissue culture propagation of Mentha spp by the use of axillary buds. Plant Cell Rep 5:17–18

    Article  CAS  Google Scholar 

  • Repcakova K, Rychlova M, Cellarova E, Honcariv R (1986) Micropropagation of Mentha piperita L. through tissue cultures. Herba Hung 25:77–88

    CAS  Google Scholar 

  • Ringer KL, McConckey ME, Davis EM, Rushing GW, Croteau R (2003) Monoterpene doublebond reductases of the (−)-menthol biosynthetic pathway: isolation and characterization of cDNAs encoding (−)-isopiperitenone reductase and (+)-pulegone reductase of peppermint. Arch Biochem Biophys 418:80–92

    Article  PubMed  CAS  Google Scholar 

  • Ringer KL, Davis EM, Croteau R (2005) Monoterpene metabolism. Cloning, expression, and characterization of (−)-isopiperitenol/(−)-carveol dehydrogenase of peppermint and spearmint. Plant Physiol 137:863–872

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Rohloff J (1999) Monoterpene composition of essential oil from peppermint (Mentha × piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J Agric Food Chem 47:3782–3786

    Article  PubMed  CAS  Google Scholar 

  • Rohloff J, Dragland S, Mordal R, Iversen TH (2005) Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha × piperita L.). J Agric Food Chem 53:4143–4148

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria — a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, BringerMeyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  • Ruttle ML (1931) Cytological and embryological studies of the genus Mentha. Gartenbauwissenschaft 44:428–468

    Google Scholar 

  • Sato H, Enomoto S, Oka S, Hosomi K, Ito Y (1993) Plant regeneration from protoplasts of peppermint (Mentha piperita L.). Plant Cell Rep 12:546–550

    CAS  Google Scholar 

  • Sato H, Enomoto S, Oka S, Hosomi K, Ito Y (1994) The effect of 4-PU on protoplast culture of peppermint (Mentha piperita L.). Plant Tissue Cult Lett 11:134–138

    CAS  Google Scholar 

  • Sato H, Yamada K, Mii M, Hosomi K, Okuyama S, Uzawa M, Ishikawa H, Ito Y (1996) Production of an interspecific somatic hybrid between peppermint and gingermint. Plant Sci 115:101–107

    Article  CAS  Google Scholar 

  • Satoh T, Sugawara Y, Shirahata A, Masujima T (2003) Effects on humans elicited by inhaling the fragrance of essential oils: sensory test, multi-channel thermometric study and forehead surface potential wave measurement on basil and peppermint. Anal Sci 19:139–146

    Article  PubMed  CAS  Google Scholar 

  • Schalk M, Croteau R (2000) A single amino acid substitution (F3631) converts the regiochemistry of the spearmint (−)-limonene hydroxylase from a C6-to a C3-hydroxylase. Proc Natl Acad Sci USA 97:11948–11953

    Article  PubMed  CAS  Google Scholar 

  • Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jürgens G, Hülskamp M (2002) TRIPTYCHON and CAPRICEmediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 21:5036–5046

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Cell Biol 6:74–78

    CAS  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessement of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16

    Article  CAS  Google Scholar 

  • Shahi AK, Chandra S, Dutt P, Kaul BL, Tava A, Avato P (1999) Essential oil composition of Mentha × piperita L. from different environments of north India. Flavour Fragr J 14:5–8

    Article  CAS  Google Scholar 

  • Sharma AK, Bhattacharyya NK (1959) Cytological studies on different species of Mentha with special reference to the occurrence of chromosomal biotypes. Cytologia 24:198–212

    Google Scholar 

  • Shasany AK, Khanuja PS, Dhawan S, Yadav U, Sharma S, Kumar S (1998) High regenerative nature of Mentha arvensis internodes. J Biosci 23:641–646

    Google Scholar 

  • Shasany AK, Darokar MP, Dhawan S, Gupta AK, Gupta S, Shukla AK, Patra NK, Khanuja SP (2005) Use of RAPD and AFLP markers to identify inter-and intraspecific hybrids of Mentha. Heredity 96:542–549

    Article  CAS  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  PubMed  CAS  Google Scholar 

  • Singh TP, Sharma K (1986) Mentha-taxonomic status as interpreted through cytology, genetics and phytochemistry. Ind J Genet 46[Suppl]:198–208

    CAS  Google Scholar 

  • Son J-S, Chang Y-J, Choi Y-D, Kim S-U (1998) Role of jasmonic acid in biotransformation of (−)-isopiperitenone in suspension cell culture of Mentha piperita. Mol Cells 8:366–369

    PubMed  CAS  Google Scholar 

  • Spencer A, Hamill JD, Rhodes MJC (1990) Production of terpenes by differentiated shoot cultures of Mentha citrata transformed with Agrobacterium tumefaciens T37. Plant Cell Rep 8:601–604

    Article  CAS  Google Scholar 

  • Spencer A, Hamill JD, Rhodes MJC (1993a) In vitro biosynthesis of monoterpenes by Agrobacterium transformed shoot cultures of two Mentha species. Phytochemistry 32:911–919

    Article  CAS  Google Scholar 

  • Spencer A, Hamill JD, Rhodes MJC (1993b) Transformation in Mentha species (mint). In: Bajaj YPS (ed) Plant protoplasts and genetic engineering III. (Biotechnology in agriculture and forestry, vol 22) Springer, Berlin Heidelberg New York, pp 278–293

    Google Scholar 

  • Suga T, Hirata T, Yamamoto Y (1980) Lipid constituents of callus tissues of Mentha spicata. Agric Biol Chem 44:1817–1820

    CAS  Google Scholar 

  • Sugawara Y, Hino Y, Kawasaki M, Hara C, Tamura K, Sugimoto N, Yamanishi Y, Miyauchi M, Masujima T, Aoki T (1999) Alteration of perceived fragrance of essential oils in relation to type of work: a simple screening test for efficacy of aroma. Chem Sens 24:415–421

    Article  CAS  Google Scholar 

  • Szymanski DB, Lloyd AM, Marks MD (2000) Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci 5:214–219

    Article  PubMed  CAS  Google Scholar 

  • Turner GW, Croteau R (2004) Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol 136:4215–4227

    Article  PubMed  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Nielson EE, Froehlich JE, Croteau R (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    Article  PubMed  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000a) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    Article  PubMed  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000b) Distribution of peltate glandular trichomes on developing leaves in peppermint. Plant Physiol 124:655–663

    Article  PubMed  CAS  Google Scholar 

  • Umezu T, Sakata A, Ito H (2001) Ambulation-promoting effect of peppermint oil andidentification of its active constituents. Pharma Biochem Behav 69:383–390

    Article  CAS  Google Scholar 

  • Van Eck JM, Kitto SL (1990) Callus initiation and regeneration inMentha. Hortscience 25:804–806

    Google Scholar 

  • Van Eck JM, Kitto SL (1992) Regeneration of peppermint and orange mint from leaf disks. Plant Cell Tissue Organ Cult 30:41–49

    Article  Google Scholar 

  • Veronese P, Li X, Niu X, Weller SC, Bressan RA, Hasegawa PM (2001) Bioengineering mint crop improvement. Plant Cell Tissue Organ Cult 64:133–144

    Article  CAS  Google Scholar 

  • Veronese P, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV, Bresan RA (2003) Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J 35:574–587

    Article  PubMed  CAS  Google Scholar 

  • Vespa L, Vachon G, Berger F, Perazza D, Faure JD, Herzog M (2004) The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication. Plant Physiol 134:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Voirin B, Bayet C (1996) Developmental changes in the monoterpene composition of Mentha × piperita leaves from individual peltate trichomes. Phytochemistry 43:573–580

    Article  CAS  Google Scholar 

  • Wang E, Wang R, Deparasis J, Loughrin JH, Gan S, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome gland enhances natural-product-based aphid resistance. Nat Biotechnol 19:371–374

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Gan S, Wagner GJ (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J Exp Bot 53:1891–1897

    Article  PubMed  CAS  Google Scholar 

  • Werrmann U, Knorr D (1993) Conversion of menthyl acetate or neomenthyl acetate into menthol or neomenthol by cell suspension cultures of Mentha canadensis and M. piperita. J Agric Food Chem 41:517–520

    Article  CAS  Google Scholar 

  • Wiermann R (1981) Secondary plant products and cell and tissue differentiation In: Conn EE (ed) The biochemistry of plants, vol 7. Academic, New York, pp 85–115

    Google Scholar 

  • Wildung MR, Croteau RB (2005) Genetic engineering of peppermint for improved essential oil composition and yield. Transgenic Res 14:365–372

    Article  PubMed  CAS  Google Scholar 

  • Wise ML, Croteau R (1999) Monoterpene biosynthesis. In: Cane DE (ed) Comprehensive natural product chemistry: isoprenoids including carotenoids and steroids, vol 2. Oxford Pergamon, Oxford, pp 97–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jullien, F. (2007). Mint. In: Pua, EC., Davey, M.R. (eds) Transgenic Crops IV. Biotechnology in Agriculture and Forestry, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36752-9_23

Download citation

Publish with us

Policies and ethics