Skip to main content

Chickpea

  • Chapter
  • 1457 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 59))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed K, Khalique F, Khan IA, Afzal M, Malik BA (1991) Studies on genetic resistance in chickpea (Cicer arietinum L.) to bruchid beetle (Callosobruchus chinensis L.) attack. Pak J Sci Ind Res 34:449–452

    Google Scholar 

  • Ahmed K, Khalique F, Khan IA, Malik BA (1993) Genetic differences for susceptibility of chickpea to bruchid beetle (Callosobruchus chinensis L.) attack. Pak J Sci Ind Res 36:96–98

    Google Scholar 

  • Barcelo P, Lazzeri PA (1998) Direct gene transfer: chemical, electrical and physical methods. In: Lindsey K (ed) Transgenic plant research. Harwood Academic, Amsterdam, pp 35–55

    Google Scholar 

  • De Block M (1993) The cell biology of plant transformation: current state, problems, prospects and implications for plant breeding. Euphytica 71:1–14

    Article  Google Scholar 

  • Fontana GS, Santini L, Caretto S, Frugis G, Mariotti D (1993) Genetic transformation in the grain legume Cicer arietinum L (chickpea). Plant Cell Rep 12:194–198

    Article  CAS  Google Scholar 

  • Fratini R, Ruiz ML (2003) A rooting procedure for lentil (Lens culinaris Medik.) and other hypogeous legumes (pea, chickpea and Lathyrus) based on explant polarity. Plant Cell Rep 21:726–732

    PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojiana K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Angenon G, Van Montagu M (1998) Agrobacterium mediated plant transformation: a scientifically intriguing story with significant applications. In: Lindsey K (ed) Transgenic plant research. Harwood Academic, Amsterdam, pp 1–33

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Baker Sheerman SE, Boulter DRF (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 300:160–163

    Article  Google Scholar 

  • Hill RA, Sendashonga C (2003) General principles for risk assessment of living modified organisms: lessons from chemical risk assessment. Environ Biosafety Res 2:81–88

    PubMed  Google Scholar 

  • Huda S, Islam R, Bari MA (2000) Shoot regeneration from internode derived callus of chickpea (Cicer arietinum L). Int Chickpea Pigeonpea Newslett 7:28–29

    Google Scholar 

  • Islam R, Malik T, Husnain T, Riazuddin S (1994) Strain and cultivar specificity in the Agrobacterium-chickpea interaction. Plant Cell Rep 13:561–563

    Article  CAS  Google Scholar 

  • Islam R, Farooqui H, Riazuddin S (1999) Improved efficiency in chickpea tissue culture: effects of presoaking and age of explants on in-vitro shoot proliferation. Int Chickpea Pigeonpea Newslett 6:36–37

    Google Scholar 

  • Jayanand B, Sudarsanam G, Sharma KK (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L) by using axillary meristem explants derived from in vitro-germinated seedlings. In Vitro Cell Dev Biol Plant 39:171–179

    Article  Google Scholar 

  • Kar S, Johnson TM, Nayak P, Sen SK (1996) Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea (Cicer arietinum L). Plant Cell Rep 16:32–37

    CAS  Google Scholar 

  • Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of cryIA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    Article  CAS  Google Scholar 

  • Krattiger AF (1997) Insect resistance in crops: a case study of Bacillus thuringiensis (Bt) and its transfer to developing countries. International Service for the Acquisition of Agri-Biotech Applications, Ithaca, pp 42

    Google Scholar 

  • Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, De Kathen A, Pickardt T, Schieder O (2000) Agrobactrium mediated transformation of chickpea (Cicer arietinum L) embryo axes. Plant Cell Rep 19:235–240

    Article  CAS  Google Scholar 

  • Li Z, Jarret RL, Cheng M, Xing A, Demski JW (2000) Transgenic peanut (Arachis hypogaea L). In: Bajaj YPS (ed) Transgenic crops I. (Biotechnology in agriculture and forestry, vol 46) Springer, Berlin Heidelberg New York, pp 209–224

    Google Scholar 

  • McPhee KE, Gollasch S, Schroeder HE, Higgins TJV (2004) Gene technology in pea. In: Curtis IS (ed) Transgenic crops of the world — essential protocols. Kluwer Academic, Dordrecht, pp 351–359

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murdock LL, Huesing JE, Nielsen SS, Pratt RC, Shade RE (1990) Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29:85–89

    Article  CAS  Google Scholar 

  • Murfet IC (1971) Flowering in Pisum: reciprocal grafts between known genotypes. Aust J Biol Sci 24:1089–1101

    Google Scholar 

  • Olhoft PM, Somers DA (2004) Soybean transformation using the agrobacterium-mediated cotyledonary-node method. In: Curtis IS (ed) Transgenic crops of the world — essential protocols. Kluwer Academic, Dordrecht, pp 323–335

    Google Scholar 

  • Pacheco IA, Bolonhezi S, Sartori MR, Turatti JM, Paula C, Lourencao AL, De Paula DC (1994) Resistance to bruchids, fatty acid composition and grain texture in genotypes of chickpea. Bragantia 53:61–74

    CAS  Google Scholar 

  • Polisetty R, Paul V, Deveshwar JJ, Khetarpal S, Suresh K, Chandra R (1997) Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L). Plant Cell Rep 16:565–571

    CAS  Google Scholar 

  • Polowick PL, Baliski DS, Mahon JD (2004) Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L): gene integration, expression and inheritance. Plant Cell Rep 23:485–491

    Article  PubMed  CAS  Google Scholar 

  • Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206

    Article  CAS  Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (1990) Gene transfer to plants: assessment and perspectives. Physiol Plant 79:125–134

    Article  CAS  Google Scholar 

  • Romeis J, Sharma HC, Sharma KK, Das S, Sarmah BK (2004) The potential of transgenic chickpeas for pest control and possible effects on non-target arthropods. Crop Prot 23:923–938

    Article  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defences against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37

    CAS  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82

    Article  CAS  Google Scholar 

  • Schalk JM (1973) Chickpea resistance to Callosobruchus maculatus in Iran. J Econ Entomol 66:578–579

    Google Scholar 

  • Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L). Plant Physiol 101:751–757

    Article  PubMed  CAS  Google Scholar 

  • Schuler TH, Poppy G, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    Article  CAS  Google Scholar 

  • Senthil G, Williamson B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L). Plant Cell Rep 23:297–303

    Article  PubMed  CAS  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic peas expressing the α-amylase inhibitor of the common bean are resistant to the bruchid beetles Callosobruchus maculatus and C. chinensis. Bio/Technology 12:793–796

    Article  CAS  Google Scholar 

  • Sharma KK, Lavanya M (2002) Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. JIRCAS Work Rep 2002:61–73

    Google Scholar 

  • Shri PV, Davis TM (1992) Zeatin-induced shoot regeneration from immature chickpea (Cicer arietinum L) cotyledons. Plant Cell Tissue Organ Cult 28:45–51

    Article  CAS  Google Scholar 

  • Singh KB (1997) Chickpea (Cicer arietinum L). Field Crops Res 53:161–170

    Article  Google Scholar 

  • Songstad DD, Somers DA, Griesbach RJ (1995) Advances in alternative DNA delivery techniques. Plant Cell Tissue Organ Cult 40:1–15

    Article  CAS  Google Scholar 

  • Tabe LM, Molvig L (2006) Lupins. In: Pua EC, Davey M (eds) Transgenic crops VI. (Biotechnology in agriculture and forestry, vol 61) Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Tewary-Singh N, Sen J, Kiesecker H, Reddy VS, Jacobsen HJ, Guha-Mukherjee S (2004) Use of a herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea. Plant Cell Rep 22:576–583

    Article  Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891

    Article  PubMed  CAS  Google Scholar 

  • White CL, Tabe LM, Dove H, Hamblin J, Young P, Phillips N, Taylor R, Gulati S, Ashes J, Higgins TJV (2000) Increased efficiency of wool growth and live weight gain in Merino sheep fed transgenic lup in seed containing sunflower albumin. J Sci Food Agric 81:147–154

    Article  Google Scholar 

  • Yang H, Singsit C, Wang A, Gonsalves D, Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep 17:693–699

    Article  CAS  Google Scholar 

  • Zupan J, Zambryski P (1997) The Agrobacterium DNA transfer complex. Crit Rev Plant Sci 16:279–295

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popelka, J.C., Higgins, T.J.V. (2007). Chickpea. In: Pua, EC., Davey, M.R. (eds) Transgenic Crops IV. Biotechnology in Agriculture and Forestry, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36752-9_13

Download citation

Publish with us

Policies and ethics