Skip to main content

Cucumber

  • Chapter
Transgenic Crops IV

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 59))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Ashok Kumar HG, Murthy HN, Paek KY (2003) Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L. Sci Hort 98:213–222

    Article  CAS  Google Scholar 

  • Bartoszewski G, Malepszy S, Havey M (2004) Mosaic (MSC) cucumbers regenerated from independent cell culture possesses different mitochondrial rearrangements. Curr Genet 45:24–53

    Article  CAS  Google Scholar 

  • Bradeen JM, Staub JE, Wye C, Antonise R, Peleman J (2001) Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome 44:111–119

    Article  PubMed  CAS  Google Scholar 

  • Burza W, Malepszy S (1995a) Direct plant regeneration from leaf explants in cucumber (Cucumis sativus L.) is stable and free of genetic variation. Plant Breed 114:341–345

    Article  Google Scholar 

  • Burza W, Malepszy S (1995b) In vitro culture of Cucumis sativus L. XVIII. Plants from protoplasts through direct somatic embryogenesis. Plant Cell Tissue Organ Cult 41:259–266

    Article  Google Scholar 

  • Burza W, Malepszy S (1998) Cytokinin control of cucumber (Cucumis sativus L.) somatic embryogenesis. In: Plant biotechnology and in vitro biology in the 21st century, Jerusalem. Int Congr Plant Tissue Cell Cult 9:68

    Google Scholar 

  • Burza W, Murkowski A, Malepszy S (1994) Differences in the luminescence of regenerated cucumber plants caused by plant hormones in the medium. Gartenbauwissenschaft 59:105–108

    CAS  Google Scholar 

  • Burza W, Malepszy S, Rostek E (1996) The effect of simple and recurrent in vitro regeneration on a cucumber inbred line under field cultivation. Int J Hortic Sci 28:11–13

    Google Scholar 

  • Burza W, Zuzga S, Yin Z, Malepszy S (2006) Cucumber (Cucumis sativus L.). In: Wang K (ed) Agrobacterium protocols, vol 1, 2nd edn. (Methods in molecular biology, vol 343) Humana, Totowa, pp 427–438

    Google Scholar 

  • Chee PP, Slightom JL (1991) Transfer and expression of cucumber mosaic virus coat protein gene in the genome of Cucumis sativus. J Am Soc Hortic Sci 116:1098–1102

    CAS  Google Scholar 

  • Chen JF, Kirkbride JR (2000) A new synthetic species of Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome. Britonia 52:315–319

    Article  Google Scholar 

  • Chen JF, Staub JE, Tashiro Y, Isshiki S, Miyazaki S (1997) Successful interspecific hybridization between Cucumis sativus L. and Cucumis hystrix Chakr. Euphytica 96:413–419

    Article  Google Scholar 

  • Colijn-Hooymans CM, Hakkert JC, Jansen J, Custers JBM (1994) Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell Tissue Organ Cult 39:211–217

    Article  Google Scholar 

  • Custers JBM, Bergervoet JHW (1990) In vitro culture of embryos of Cucumis spp: heart-stage embryos have a higher ability of direct plant formation than advanced-stage embryos. Sex Plant Reprod 3:152–159

    Article  Google Scholar 

  • Dal-Hoe Koo, Hur Y, Jin D-C, Bang J-W (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol Cells 13:413–418

    Google Scholar 

  • Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arus P, deVicente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974

    Article  PubMed  CAS  Google Scholar 

  • FAO (2004) Production year book 2004. FAO, Rome

    Google Scholar 

  • Faris NM, Rakoczy-Trojanowska M, Malepszy S, Niemirowicz-Szczytt (1996) Induction and regeneration of cucumber (Cucumis sativus L.) doubled haploids. Genet Pol 37A:181–186

    Google Scholar 

  • Faris NM, Rakoczy-Trojanowska M, Malepszy S, Niemirowicz-Szczytt K (2000) Diploidization of cucumber (Cucumis sativus L.) haploids by in vitro culture of leaf explant. In: Bielecki S, Tramper J, Polak J (eds) Food biotechnology. (Progress in food biotechnology, vol 17) Elsevier Science, Rotterdam, pp 49–54

    Google Scholar 

  • Fazio G, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  PubMed  CAS  Google Scholar 

  • Filipecki MK, Sommer H, Malepszy S (1997) The MADS-box gene CUS1 is expressed during cucumber somatic embryogenesis. Plant Sci 125:63–74

    Article  CAS  Google Scholar 

  • Filipecki M, Wisniewska A, Yin Z, Malepszy S (2005) The heritable changes in metabolic profiles of plants regenerated in different types of in vitro culture. Plant Cell Tissue Organ Cult 82:349–356

    Article  CAS  Google Scholar 

  • Fukui K, Ohmido N, Khush GS (1994) Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet 87:893–899

    Article  CAS  Google Scholar 

  • Gajc-Wolska J, Szwacka M, Malepszy S (2001) Evaluation of transgenic lines of cucumber (Cucumis sativus L.) with gene of thaumatin. Veg Crop Res Bull 54:5–9

    Google Scholar 

  • Gajc-Wolska J, Szwacka M, Malepszy S (2003) Sensory characteristic of cucumber fruits (Cucumis sativus L.) with thaumatin gene. Acta Hortic 604:449–451

    Google Scholar 

  • Gal-On A, Wolf D, Antignus Y, Patlis L, Ryu Hyun K, Eun Min B, Pearlsman M, Lachman O, Gaba W, Wang Y, Moshe Shiboleth Y, Yang J, Zelcer A (2005) Transgenic cucumbers harboring the 54-kDa putative gene of cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Res 14:81–93

    Article  PubMed  CAS  Google Scholar 

  • Ganal M, Torres R, Hemleben V (1986) Comparison of the ribosomal RNA genes in four closely related Cucurbitaceae. Plant Syst Evol 154:63–77

    Article  CAS  Google Scholar 

  • Gawronska H, Burza W, Bolesta E, Malepszy S (2000) Zygotic and somatic embryos of cucumber (Cucumis sativus L.) substantially differ in their levels of abscisic acid. Plant Sci 157:129–137

    Article  PubMed  CAS  Google Scholar 

  • Gémes-Juhász A, Balogh P, Ferenczy A, Kristóf Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21:105–111

    Article  CAS  Google Scholar 

  • Gonsalves D, Chee P, Provvidenti R, Seem R, Slightom JL (1992) Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection be cucumber mosaic virus under field conditions with natural challenge inoculation by vectors. Bio/Technology 10:1562–1570

    Article  CAS  Google Scholar 

  • Gzyl J, Gwozdz E (2005) Selection in vitro and accumulation of chelatins in cadmium tolerant cell line of cucumber (Cucumis sativus L.). Plant Cell Tissue Organ Cult 80:59–67

    Article  CAS  Google Scholar 

  • Havey MJ (1997) Paternal transmission of the cucumber mitochondrial genome. J Hered 88:232–235

    Google Scholar 

  • Havey MJ, McCreight J, Rhodes B, Taurick G (1998) Differential transmission of the Cucumis organellar genomes. Theor Appl Genet 98:122–128

    Article  Google Scholar 

  • He Z, Duan Z, Liang W, Chen F, Yao W, Liang H, Yue C, Chen F, Dai J, (2006) Mannose selection system used for cucumber transformation. Plant Cell Rep (in press)

    Google Scholar 

  • Hemleben V, Zentgraf U, King K, Borisjuk N, Schweizer G (1992) Middle repetitive and highly repetitive sequences detect polymorphism in plants. Adv Mol Genet 5:157–170

    CAS  Google Scholar 

  • Hisajima S, Arai Y, Namwongprom K, Subhadrabandhu S (1989) Micropropagation of cucumber plant through reproductive organ culture and semi-aquaculture of regenerated plants. Jpn J Trop Agric 33:1–5

    Google Scholar 

  • Hoshi Y, Plader W, Malepszy S (1998) New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.). Plant Breed 117:7–82

    Article  Google Scholar 

  • Hoshi Y, Plader W, Malepszy S (1999) Physical mapping of 45S rRNA gene loci in the cucumber (Cucumis sativus L.) using fluorescence in situ hybridization. Caryologia 52:49–57

    Google Scholar 

  • Jeffrey C (2001) Cucurbitaceae. In: Hanelt P (ed) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 3. Springer, Berlin Heidelberg New York, pp 1510–1557

    Google Scholar 

  • Jin-Feng C, Staub JE, Adelberg JW, Jiang J (1999) Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Can J Bot 7:89–393

    Google Scholar 

  • Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub J, Havey M (1994) Linkages among RFLP, RAPD, isozyme, disease resistance and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet 89:42–48

    CAS  Google Scholar 

  • Kim YH, Janick J (1989) Somatic embryogenesis and organogenesis in cucumber. HortScience 24:702

    Google Scholar 

  • King K, Torres RA, Zentgraf U, Hemleben V (1993) Molecular evolution of the intergenic spacer in the nuclear ribosomal RNA genes of Cucurbitaceae. J Mol Evol 36:144–152

    Article  PubMed  CAS  Google Scholar 

  • Kirkbride JH Jr (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway, Boone, N.C.

    Google Scholar 

  • Kishimoto K, Nakajima M, Nishizawa Y, Tabei Y, Hibi T, Akutsu K (2003) Response of transgenic cucumber expressing a rice class I chitinase gene to two fungal pathogens with different infectivities. J Gen Plant Pathol 69:358–363

    Article  CAS  Google Scholar 

  • Kreuger M, Meer W van der, Postma E, Abbestee R, Raaijmakers N, Holst G-J van (1996) Genetically stable cell lines of cucumber for the large-scale production of diploid somatic embryos. Physiol Plant 97:303–310

    Article  CAS  Google Scholar 

  • Ladyman JAR, Girard B (1992) Cucumber somatic embryo development on various gelling agents and carbohydrate sources. HortScience 27:164–165

    Google Scholar 

  • Ladyzynski M, Burza W, Malepszy S (2002) Relationship between somaclonal variation and type of culture in cucumber. Euphytica 125:349–356

    Article  CAS  Google Scholar 

  • Lee HS, Kwon EJ, Kwon SY, Jeong YJ, Lee EM, Jo MH, Kim HS, Woo IS, Atsuhiko S, Kazuya Y, Kwak SS (2003) Transgenic cucumber fruits that produced elevated level of an anti-aging superoxide dismutase. Mol Breed 11:213–220

    Article  CAS  Google Scholar 

  • Lilly JW, Bartoszewski G, Malepszy S, Havey MJ (2001) A major deletion in the cucumber mitochondrial genome sorts with the MSC phenotype. Curr Genet 40:144–151

    Article  PubMed  CAS  Google Scholar 

  • Linkiewicz A, Filipecki M, Tomczak A, Grabowska A, Malepszy S (2004) Cloning of sequences differentially transcribed during induction of somatic embryogenesis in cucumber (Cucumis sativus L.). Cell Mol Biol Lett 9:795–804

    PubMed  CAS  Google Scholar 

  • Malepszy S (1988) Cucumber (Cucumis sativus L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 6: Crops II. Springer, Berlin Heidelberg New York, pp 277–293

    Google Scholar 

  • Malepszy S, El-Kazzaz A (1990) In vitro culture of Cucumis sativus L. XI. Selection of resistance to Fusarium oxysporum. Acta Hortic 280:455–458

    Google Scholar 

  • Malepszy S, Marciniak S, Nadolska-Orczyk A (1990) In vitro culture of Cucumis sativus L. IX. Yielding of regenerated plants. Gartenbauwissenschaft 55:206–208

    Google Scholar 

  • Malepszy S, Burza W, Smiech M (1996) characterization of a cucumber (Cucumis sativus L.) somaclonal variant with paternal inheritance. J Appl Genet 37:65–78

    Google Scholar 

  • Malepszy S, Sarreb DA, Mackiewicz HO, Narkiewicz M (1998) Triploids in cucumber: I. Factors influencing embryo rescue efficiency. Gartenbauwissenschaft 63:34–37

    Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Malinowski R, Filipecki M, Tagashira N, Wisniewska A, Gaj P, Plader W, Malepszy S (2004) The XTH genes in cucumber (Cucumis sativus L.) — differential expression during somatic embryogenesis. Physiol Plant 120:678–685

    Article  PubMed  CAS  Google Scholar 

  • Mibus H, Tatlioglu T (2004) Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theor Appl Genet 109:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murkowski A, Wróblewski T, Burza W, Skorska E (1999) Luminescence variations in cucumber (Cucumis sativus L.) leaves derived from different regeneration systems. Int J Hortic Sci 5:46–49

    Google Scholar 

  • Nadolska-Orczyk A, Malepszy S (1989) In vitro culture of Cucumis sativus L. 7. Genes controlling plant regeneration. Theor Appl Genet 78:836–840

    Article  Google Scholar 

  • Nam YW, Lee JR, Song KH, Lee MK, Robbins MD, Chung SM, Staub JE, Zhang HB (2005) Construction of two BAC libraries from cucumber (Cucumis sativus L.) and identification of clones linked to yield component quantitative trait loci. Theor Appl Genet 111:150–161

    Article  PubMed  CAS  Google Scholar 

  • Niemirowicz-Szczytt K, Faris NM, Rucinska M, Nikolova V (2000) Conservation and storage of a haploid cucumber (Cucumis sativus L.) collection under in vitro conditions. Plant Cell Rep 19:311–314

    Article  CAS  Google Scholar 

  • Nishibayashi S, Hayakawa T, Nakajima T, Suzuki M, Kaneko H (1996) CMV protection in transgenic cucumber plants with an introduced CMV-O cp gene. Theor Appl Genet 93:672–678

    Article  CAS  Google Scholar 

  • Palmer JD (1982) Physical and gene mapping of chloroplast DANN from Atriplex trangularis and Cucumis sativus. Nucleic Acids Res 10:1593–1605

    Article  PubMed  CAS  Google Scholar 

  • Plader W (2005) Sequencing and analysis of cucumber (Cucumis sativus L.) chloroplast genome. Wydawnictwo Naukowe Semper, Warsaw, pp 1–75

    Google Scholar 

  • Plader W, Hoshi Y, Malepszy S (1998a) Sequential fluorescent staining with CMA and DAPI for somatic chromosome identification in cucumber (Cucumis sativus L.). J Appl Genet 39:249–258

    Google Scholar 

  • Plader W, Malepszy S, Burza W, Rusinowski Z (1998b) The relationship between the regeneration system and genetic variability in the cucumber (Cucumis sativus L.). Euphytica 103:9–15

    Article  Google Scholar 

  • Przyborowski J, Niemirowicz-Szczytt K (1994) Main factors affecting cucumber (Cucumis sativus L.) haploid embryo development and plant characteristics. Plant Breed 112:70–75

    Article  Google Scholar 

  • Punja ZK, Raharjo SH (1996) Response of transgenic cucumber and carrot plants expressing different chitinase enzyme to inoculation with fungal pathogens. Plant Dis 80:999–1005

    Article  CAS  Google Scholar 

  • Punja ZK, Utkede RS (2003) Using fungi and yeast to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK, Tang FA, Sarmento GG (1990) Isolation, culture and regeneration from cotylendon and mesophyl protoplasts of two pickling cucumber (Cucumis sativus L.) genotypes. Plant Cell Rep 9:61–64

    Article  Google Scholar 

  • Raharjo SHT, Hernadez MO, Zhang YY, Punja ZK (1996) Transformation of picking cucumber with chitinase-encoding genes using Agrobacterium tumefaciens. Plant Cell Rep 15:591–596

    Article  CAS  Google Scholar 

  • Salyaev RK, Rekoslavskaya NI, Mapelli S (2002) Transgenic plants of modified auxin status and enhanced productivity. Available at http://www.ueb.cas.cz/eng/rarwnato2002/salyaev.htm

    Google Scholar 

  • Staub JE, Meglic V (1993) Molecular genetic markers and their legal relevance for cultigen discrimination: A case study in cucumber. Hortic Technol 3:291–300

    Google Scholar 

  • Szwacka M, Krzymowska M, Osuch A, Kowalczyk ME, Malepszy S (2002) Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus daniellii. Acta Physiol Plant 24:173–185

    CAS  Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17:159–164

    Article  CAS  Google Scholar 

  • Tabei Y, Koga-Ban Y, Nishizawa Y, Kayano T, Tanaka H, Akutsu K, Hibi T (1999) Transgenic cucumber plants harboring a rice chitinase gene and its environmental risk assessment. Plant Anim Genome Conf 7:530

    Google Scholar 

  • Tagashira N, Filipecki M, Yin Z, Plader W, Fiehn O, Wisniewska A, Szwacka M, Hoshi Y, Malepszy S (2005) Metabolic profiles of transgenic cucumber plants considerably changing according to the transgene chromosomal localization. Cell Mol Biol Lett 10:697–710

    PubMed  CAS  Google Scholar 

  • Trebitsh T, Staub JE, O’Neill SD (1997) Identification of a 1-aminocycylopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhaces female sex expression in cucumber. Plant Physiol 113:987–995

    Article  PubMed  CAS  Google Scholar 

  • Twardowska A (2003) The application of transgenic cucumber containing thaumatin gene for direct consumption and food technology. PhD thesis, A Cieszkowski Agricultural University, Poznan

    Google Scholar 

  • Vakalounakis DJ (1992) Heart leaf: a recessive leaf shape marker in cucumber: linkage with disease resistance and other traits. J Hered 83:217–221

    Google Scholar 

  • Wróblewski T, Filipecki MK, Malepszy S (1995) Factors influencing cucumber (Cucumis sativus L.) somatic embryogenesis. I. The crucial role of pH and nitrogen in suspension culture. Acta Soc Bot Pol 64:223–231

    Google Scholar 

  • Wróblewski T, Malepszy S, Dmytrzak K (1998) Factors influencing cucumber (Cucumis sativus L.) somatic embryogenesis. II. The genotypes with different morphogenetic response specifically influencing culture parameters. Bull Pol Acad Sci Biol Sci 46:79–89

    Google Scholar 

  • Xie J, Wehner TC (2001) Gene list 2001 for cucumber. Cucumber Genet Coop Rep 24:110–136

    Google Scholar 

  • Yin Z, Hennig J, Szwacka M, Malepszy S (2004a) Tobacco PR-2d promoter is induced in transgenic cucumber in response to biotic and abiotic stimuli. J Plant Physiol 161:621–629

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Pawlowicz I, Malepszy S, Rorat T (2004b) Transcriptional expression of a Solanum sogarandinum GT-Dhn10 gene fusion in cucumber and its correlation with chilling tolerance in transgenic seedlings. Cell Mol Biol Lett 9:891–902

    PubMed  CAS  Google Scholar 

  • Yin Z, Plader W, Wisniewska A, Szwacka M, Malepszy S (2005a) Transgenic cucumber–a current state. Folia Hortic 17:73–90

    Google Scholar 

  • Yin Z, Bartoszewski G, Szwacka M, Malepszy S (2005b) Cucumber transformation methods–the review. Biotechnologia 1:95–13

    Google Scholar 

  • Yin Z, Malinowski R, Ziolkowska A, Sommer H, Plader, Malepszy S (2006a) The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber. Cell Mol Biol Lett 11:279–290

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Rorat T, Szabala M, Ziólkowska A, Malepszy S (2006b) Expressionof a Solanum sogaran dium SK3 type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    Article  CAS  Google Scholar 

  • Zentgraf U, Hemleben V (1992) Complex formation of nuclear proteins with the RNA polymeraseI promoter and repeated elements in the external transcribed spacer of Cucumis sativus ribosomal DNA. Nucleic Acid Res 20:3685–3691

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf U, Ganal M, Hemleben V (1990) Length heterogeneity of the rRNA precursor in cucumber (Cucumis sativus). Plant Mol Biol 15:465–474

    Article  PubMed  CAS  Google Scholar 

  • Ziolkowska A, Bartoszewski G, Burza W, Kuras M, Plader W, Malepszy S (2005) Mitochondrial mutant MSC cucumber shows impaired somatic embryogenesis. Plant Cell Tissue Organ Cult 80:329–338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plader, W., Burza, W., Malepszy, S. (2007). Cucumber. In: Pua, EC., Davey, M.R. (eds) Transgenic Crops IV. Biotechnology in Agriculture and Forestry, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36752-9_10

Download citation

Publish with us

Policies and ethics