Skip to main content

Scale-Dependent Effect of Input Data Design on DEM Accuracy

  • Chapter
Digital Terrain Modelling

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Terrain geomorphometric properties are major input parameters for majority of GIS-supported topographic models and applications such as erosion-deposition model, solar radiation model (Suri and Hofierka 2005), soil erosion model or river basin modelling (De Roo et al. 2000)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, F. (1980). The accuracy of digital terrain models. In Proceedings of the 37thPhotogrammetric Week, pages 113–143, University of Stuttgart

    Google Scholar 

  • Baredo, J., Lavalle, C., and De Roo, A. P. J. (2005). European flood risk mapping. European Commission Joint Research Centre. Special Publication. S.P.I.O5.151.EN

    Google Scholar 

  • Bates, P. and De Roo, A. P. J. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236:54–77

    Article  Google Scholar 

  • Bonk, R. (2003). Scale-dependent impact of selected factors on morphometric parameters accuracy and automated geomorphologicalmapping. PhD thesis, Comenius University Bratislava, Slovakia, Faculty of Natural Sciences

    Google Scholar 

  • Cebecauer, T., Hofierka, J., and Suri, M. (2002). Processing digital terrain models by regularized spline with tension: tuning interpolation parameters for different input datasets. In Ciolli, M. and Zatelli, P., editors, Proceedings of the Open Source GIS — GRASS users conference 2002, Trento, Italy, 11–13 September

    Google Scholar 

  • Clif, A. D. and Ord, J. K. (1981). Spatial Processes: Models and Applications. London: Pion

    Google Scholar 

  • De Roo, A. P. J. (2000). Modelling runoff and sediment transport in catchments using GIS. In Gurnell, A.M. and Montgomery, D.R., editors, Eydrohgical Applications of GIS, Advances in Hydrological Processes, page 184. John Wiley

    Google Scholar 

  • De Roo, A. P. J., Barredo, J., Lavalle, C., Bodis, K., and Bonk, R. (2005). Potential flood hazard and risk mapping at pan-European scale. In Peckham, R. and Jordan, G., editors, Digital elevation modelling. Development and applications in a policy support environment. Joint Research Centre, European Commission, Ispra. in press

    Google Scholar 

  • De Roo, A. P. J., Gouweleeuw, B., Thielen, J., Bates, P., and Hollings worth, A. (2003). Development of a European flood forecasting. International Journal of River Basin Management, l(l):49–59

    Article  Google Scholar 

  • De Roo, A. P. J., Wesseling, C., and Van Deursen, W. P. A. (2000). Physicallybased river basin modeling within a gis: The LISFLOOD model. Hydrological Processes, (14):1981–1992

    Google Scholar 

  • Goodchild, M. (1986). Spatial autocorrelation. In Concepts and Techniques in Modern Geography. Norwich: Geo Books

    Google Scholar 

  • Li, Z. (1990). Sampling strategy and accuracy assessment for digital terrain modeling. PhD thesis, University of Glasgow, Glasgow. 299 pp.

    Google Scholar 

  • Li, Z. (1991). Effects of check points on the reliability of dtm accuracy estimates obtained from experimental tests. Photogrammetric Enineering & Remote Sensing, 57(10):1333–1340

    Google Scholar 

  • Li, Z. (1992). Variation of the accuracy of digital terrain models with sampling interval. Photo grammetric Records, 14(79): 113–128

    Article  Google Scholar 

  • Li, Z. (1994). A comparative study of the accuracy of digital terrain models (DTMs) based on various data models. ISPRS Journal of Photogrammetry and Remote Sensing, 49(1):2–11

    Article  Google Scholar 

  • Makarovic, B. (1972). Information transfer in construction of data from sampled data. Photogrammetria, 28(4):111–130

    Article  Google Scholar 

  • Minar, J. (1998). Georelief and geoecobgical mapping in large scales. PhD thesis, Dept. of Physical Geography and Geoecology, Faculty of Natural sciences, Comenius University, Bratislava. in Slovak

    Google Scholar 

  • Mitasova, H. and Hofierka, J. (1993). Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Mathematical Geology, 25(6):657–669

    Article  Google Scholar 

  • Neteler, M. and Mitasova, H. (2002). Open Source GIS: A GRASS GIS Approach. Kluver Academic Publishers. 1st.edition

    Google Scholar 

  • Schmidt, J.and Dikau, R. (1999). Extracting geomorphometric attributes and objects from digital elevation models — semantics, methods, future needs. In R. Dikau and H. Saurer, editor, GIS for Earth Surface Systems, pages 154–172. Gebrüder Borntraeger, D-14129 Berlin D-70176 Stuttgart

    Google Scholar 

  • Suri, M. and Hofierka, J. (2005). Application of DEM in solar radiation modelling (natural resources: solar energy). In Peckham, R. and Jordan, G., editors, Digital elevation modelling. Development and applications in a policy support environment. Joint Research Centre, European Commission, Ispra. in press

    Google Scholar 

Referenced Web Sites

  1. http://natural-hazards.jrc.it

  2. http://ies.jrc.cec.eu.int

  3. http://efas.jrc.it

  4. http://srtm.usgs.gov

  5. http://dataservice.eea.eu.int/dataservice

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonk, R. (2007). Scale-Dependent Effect of Input Data Design on DEM Accuracy. In: Peckham, R.J., Jordan, G. (eds) Digital Terrain Modelling. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36731-4_4

Download citation

Publish with us

Policies and ethics