Skip to main content

From Mathematical Morphology to Morphological Terrain Features

  • Chapter
Digital Terrain Modelling

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Mathematical morphology can be defined as a theory for the analysis of spatial structures. It is called morphology because it concentrates on the form, shape, and size of the structures. It is mathematical in the sense that the analysis is based on set theory, integral geometry, and lattice algebra. When applied to digital spatial data, mathematical morphology offers a wide variety of methods and algorithms to solve scientific and practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annoni, A. (2005). European Reference Grids, volume EUR 21494 EN. European Commission, Joint Research Centre. URL http://sdi.jrc.it/publist/annoni2005eurgrids.pdf

  • Annoni, A., Luzet, C., Gubler, E., and Ihde, J., editors (2003). Map Projections for Europe, volume EUR 20120 EN. European Commission, Joint Research Centre. URL http://sdi.jrc.it/publist/annoni-etal2u03eur.pdf

  • Arrighi, P. and Soille, P. (1999). From scanned topographic maps to digital elevation models. In Jongmans, D., Pirard, E., and Trefois, P., editors, Proc. of Geovision’99: International Symposium on Imaging Applications in Geology, pages 1–4 Université de Liège, Belgium

    Google Scholar 

  • Band, L. (1986). Topographic partition of watersheds with digital elevation models. Water Resources Research, 22(l):15–2

    Google Scholar 

  • Bertolo, F. (2000). Catchment delineation and characterization: a review. Technical Report EUR 19563 EN, European Commission, Joint Research Centre

    Google Scholar 

  • Beucher, S. (1982). Watersheds of functions and picture segmentation. In IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pages 1928–1931, Paris

    Google Scholar 

  • Chorowicz, J. Ichoku, C., Riazanoff, S., Kim, Y.-J., and Cervelle, B. (1992). A combined algorithm for automated drainage network extraction. Water Resources Research, 28(5):1293–1302. doi:10.1029/91WR03098

    Article  Google Scholar 

  • Colombo, R., Vogt, J., Soille, P., Paracchini, M., and deJager, A. (2007). On the derivation of river networks and catchments at European scale from medium resolution digital elevation data. Catena. doi:10.1016/j.catena.2006.10.001. [Available online 22 November 2006]

    Google Scholar 

  • Couprie, M., Najman, L., and Bertrand, G. (2005). Quasi-linear algorithms for the topological watershed. Journal of Mathematical Imaging and Vision, 22(2–3):231–249. doi:10.1007/sl0851-005-4892-4

    Article  Google Scholar 

  • Douglas, D. (1986). Experiments to locate ridges and channels to create a new type of digital elevation model. Cartographica, 23(4):29–61

    Google Scholar 

  • Garbrecht, J. and Martz, L. (1997). The assignment of drainage direction over flat surfaces in raster digital elevation models. Journal of Hydrology, 193:204–213. doi:10.1016/S0022-1694(96)03138-l

    Article  Google Scholar 

  • Haralick, R. (1983). Ridges and valleys on digital images. Computer Vision, Graphics, and Image Processing, 22:28–38

    Article  Google Scholar 

  • Howard, A. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7):2261–2285. doi: 10.1029/94WR00757

    Article  Google Scholar 

  • Jenson, S. and Domingue, J. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11): 1593–1600

    Google Scholar 

  • Johnston, E. and Rosenfeld, A. (1975). Digital detection of pits, peaks, ridges, and ravines. IEEE Transactions onSystems, Man, and Cybernetics, 5:472–480

    Google Scholar 

  • Mark, D. (1984). Automated detection of drainage networks from digital elevation models. Cartographica, 21:168–178

    Google Scholar 

  • Martz, L. and deJong, E. (1988). CATCH: a FORTRAN program for measuring catchment area from digital elevation models. Computers and Geosciences, 14(5):627–640. doi:10.1016/0098-3004(88)90018-0

    Article  Google Scholar 

  • Martz, L. and Garbrecht, J. (1998). The treatment of fiat areas and depressions in automated drainage analysis of raster digital elevation models. Hydrological Processes, 12:843–855. doi:10.1002/(SICI)1099-1085(199805)12:6;843::AIDHYP658¿3.0.CO;2-R

    Article  Google Scholar 

  • Martz, L. and Garbrecht, J. (1999). An outlet breaching algorithm for the treatment of closed depressions in a raster DEM. Computers and Geosciences, 25(7):835–844. doi:10.1016/S0098-3004(99)00018-7

    Article  Google Scholar 

  • Matheron, G. (1967). Eléments pour une théorie des milieux poreux. Masson, Paris

    Google Scholar 

  • Matheron, G. (1975). Random sets and integral geometry. Wiley, New York

    Google Scholar 

  • Meyer, F. and Beucher, S. (1990). Morphological segmentation. Journal of Visual Communication and Image Representation, l(l):21–46. doi:10.1016/1047-3203(90)90014-M

    Article  Google Scholar 

  • Moore, I., Grayson, R., and Ladson, A. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5:3–30

    Article  Google Scholar 

  • Morris, D. and Heerdegen, R. (1988). Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology, 1:131–141. doi:10.1016/0169-555X(88)90011-6

    Article  Google Scholar 

  • O’Callaghan, J. and Mark, D. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and lmage Processing, 28:323–34

    Article  Google Scholar 

  • Peucker, T. and Douglas, D. (1975). Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and Image Processing, 4:375–387

    Google Scholar 

  • Qian, J., Ehrich, R., and Campbell, J. (1990). DNESYS—An expert system for automatic extraction of drainage networks from digital elevation data. IEEE Transactions on Geoscience and Remote Sensing, 28(1):29–35. doi:10.1109/36.45743

    Article  Google Scholar 

  • Ranwez, V. and Soille, P. (2002). Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters, 23(6):687–702. doi:10.1016/S0167-8655(01)00146-5

    Article  Google Scholar 

  • Rinaldo, A., Vogel, G., Rigon, R., and Rodriguez-Iturbe, I. (1995). Can one gauge the shape of a basin? Water Resources Research, 31(4):1119–1127. doi: 10.1029/94WR03290

    Article  Google Scholar 

  • Seemuller, W. (1989). The extraction of ordered vector drainage networks from elevation data. Computer Vision, Graphics, and Image Processing, 47(l):45–58. doi:10.1016/0734-189X(89)90053-4

    Article  Google Scholar 

  • Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, London

    Google Scholar 

  • Serra, J., editor (1988). Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Academic Press, London

    Google Scholar 

  • Smith, T, Zhan, C., and Gao, P. (1990). A knowledge-based, two-step based procedure for extracting channel networks from noisy DEM data. Computers and Geosciences, 16(6):777–786. doi:10.1016/0098-3004(90)90003-C

    Article  Google Scholar 

  • Soille, P. (1988). Modèles numériques de terrain et morphologie mathématique: Délimitation automatique de bassins versants. Master’s thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgique

    Google Scholar 

  • Soille, P. (1991). Spatial distributions from contour lines: an efficient methodology based on distance transformations. Journal of Visual Communication and Image Representation, 2(2):138–150. doi:10.1016/1047-3203(91)90004-Y

    Article  Google Scholar 

  • Soille, P. (1992). Morphologie Mathématique: du Relief à la Dimensionalité — Algorithmes et Méthodes—. PhD thesis, Université catholique de Louvain; en collaboration avec l’Ecole des Mines de Paris

    Google Scholar 

  • Soille, P. (2002). Advances in the analysis of topographic features on discrete images. Lecture Notes in Computer Science, 2301:175–186. URL http://springerlink.metapress.com/link.asp?id=hkufqkd2ehbe43hl

    Google Scholar 

  • Soille, P. (2003). Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin Heidelberg New York, 2nd edition

    Google Scholar 

  • Soille, P. (2004). Optimal removal of spurious pits in grid digital elevation models. Water Resources Research, 40(12):W12509. doi: 10.1029/2004WR003060

    Article  Google Scholar 

  • Soille, P. and Ansoult, M. (1990). Automated basin delineation from digital elevation models using mathematical morphology. Signal Processing, 20:171–182. doi:10.1016/0165-1684(90)90127-K

    Article  Google Scholar 

  • Soille, P. and Gratin, C. (1994). An efficient algorithm for drainage networks extraction on DEMs. Journal of Visual Communication and Image Representation, 5(2):181–189. doi:10.1006/jvci.l994.1017

    Article  Google Scholar 

  • Soille, P., Vogt, J., and Colombo, R. (2003). Carving and adpative drainage enforcement of grid digital elevation models. Water Resources Research, 39(12):1366. doi:10.1029/2002WR001879

    Article  Google Scholar 

  • Tarboton, D. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2):309–319. doi:10.1029/96WR03137

    Article  Google Scholar 

  • Tarboton, D., Bras, R., and Rodriguez-Iturbe, I. (1989). Scaling and elevation in river networks. Water Resources Research, 25:2037–2051

    Article  Google Scholar 

  • Tarboton, D., Bras, R., and Rodriguez-Iturbe, I. (1991). On the extraction of channel networks from digital elevation data. Hydrological Processes, 5:81–100

    Article  Google Scholar 

  • Toriwaki, J.-I. and Fukumara, T. (1978). Extraction of structural information from grey pictures. Computer Graphics and Image Processing, 7:30–51

    Google Scholar 

  • Tribe, A. (1992). Automated recognition of valley lines and drainage networks from digital grid elevation models: a review and a new method. Journal of Hydrology, 139:263–293. doi:10.1016/0022-1694(92)90206-B

    Article  Google Scholar 

  • Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583–598. doi:10.1109/34.87344

    Article  Google Scholar 

  • Vogt, J., Colombo, R., and Bertolo, F. (2003a). Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics. Geomorphology, 53(3–4):281–298. doi:10.1016/S0169-555X(02)00319-7

    Article  Google Scholar 

  • Vogt, J., Colombo, R., Paracchini, M., Soille, P., de Jager, A., and Folving, S. (2003b). A European landscape stratification reflecting drainage density. In Helming, K. and Wiggering, H., editors, Sustainable Development of Multifunctional Landscapes, pages 95–110. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Vogt, J., Soille, P., Colombo, R., Paracchini, M., and deJager, A. (2007). Development of a pan-European river and catchment database. In Peckham, R. and Jordan, G., editors, Digital Terrain Modelling, pp. 121–144. Springer-Verlag

    Google Scholar 

  • Zhang, M., Campbell, J., and Haralick, R. (1990). Automatic delineation of drainage basins within digital elevation data using the topographic primal sketch. Mathematical Geology, 22(2): 189–209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soille, P. (2007). From Mathematical Morphology to Morphological Terrain Features. In: Peckham, R.J., Jordan, G. (eds) Digital Terrain Modelling. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36731-4_2

Download citation

Publish with us

Policies and ethics